

New Zealand Melanoma Clinical Guidelines

FOURTH EDITION 2025

Endorsed by

Te Aho o Te Kahu – Cancer Control Agency supports the use of the New Zealand Melanoma Clinical Guidelines as a tool to guide clinical decision-making and promote best practice melanoma management in New Zealand. Te Aho o Te Kahu – Cancer Control Agency played a key role in completing the first edition and has remained involved in subsequent editions.

Citation: Skin Cancer New Zealand. 2025. New Zealand Melanoma Clinical Guidelines. Christchurch: Skin Cancer New Zealand.

First published in October 2021 by Melanoma Network of New Zealand (now Skin Cancer New Zealand). This version published in September 2023.

This document is available at https://melnet.org.nz/clinical-resources-and-research

This work is licensed under the Creative Commons Attribution 4.0 International licence. In essence, you are free to: share ie, copy and redistribute the material in any medium or format; adapt ie, remix, transform and build upon the material. You must give appropriate credit, provide a link to the licence and indicate if changes were made.

Contents

Purpose	5
Quick reference guide	6
CLINICAL GUIDELINE 1: Prevention and early detection 1.1: Prevention and early detection 1.2: Training of primary health care professionals 1.3: People at increased risk of melanoma	12 12 17 19
CLINICAL GUIDELINE 2: Timely access to services	21
2.1: Timely access to services	21
CLINICAL GUIDELINE 3: Investigation, diagnosis and staging 3.1: Patient access to trained health care professionals	23 23
3.2: Excision of melanocytic lesions	25 27
3.3: Histopathological reporting 3.4: Time to pathological diagnosis	30
3.5: Sentinel node biopsy reporting	31
3.6: Radiological staging	32
CLINICAL GUIDELINE 4: Multidisciplinary care	37
4.1: Multidisciplinary meetings	37
CLINICAL GUIDELINE 5: Treatment	39
5.1: Re-excision of histologically confirmed melanomas	39
5.2: Desmoplastic/neurotropic melanoma	43
5.3: Sentinel node biopsy technique	45
5.4: Therapeutic/Completion lymphadenectomy	49
5.5: Neoadjuvant systemic therapy in locoregionally advanced melanoma	53
5.6: Adjuvant therapy in locoregionally advanced melanoma	57
5.7: Patients with loco-regionally recurrent, locally advanced and metastatic melanoma	60
CLINICAL GUIDELINE 6: Follow-up and surveillance	63
6.1: Clinical follow-up and surveillance	63
6.2: Patient self-examination	68
6.3: Follow-up cross-sectional imaging	70
6.4: Ultrasound imaging of draining node basins	76

CLINICAL GUIDELINE 7: Supportive care	78
7.1: Supportive care	78
CLINICAL GUIDELINE 8: Care coordination	81
8.1: Care coordination	81
Glossary of terms	83
Appendices	87
Appendix 1: AJCC Melanoma of the skin staging (8th edition)	87
Appendix 2: Te Whatu Ora Counties Manukau: Skin histology request form	89
Appendix 3: RCPA Primary cutaneous melanoma structured reporting protoc	ol 3 rd
edition	91
Appendix 4: Melanoma Institute Australia: sentinel node biopsy reporting	
template	94
Appendix 5: Example table for melanoma staging	95
Appendix 6: Example melanoma follow-up schedule	96
Appendix 7: National Melanoma Working Group members	97
Appendix 8: Summary of changes	98
Appendix 9: Background to the New Zealand Melanoma Clinical Guidelines	103

Purpose

High-quality cancer care in New Zealand requires a nationally consistent, coordinated approach that advances equity and person-centred care.

The clinical guidelines contained in this resource have been developed by the National Melanoma Working Group (NMWG) (see **Appendix 7**) and **Skin Cancer New Zealand** (formerly Melanoma Network of New Zealand) in partnership with a wide range of sector experts and key stakeholders, including Te Aho o Te Kahu – Cancer Control Agency. They focus specifically on cutaneous melanoma.

The guidelines aim to reduce New Zealand's world-leading melanoma incidence rates and improve outcomes for all melanoma patients by informing work aimed at ensuring national consistency in the access and delivery of quality melanoma care. They are targeted at clinicians but are also a valuable resource for government health organisations, melanoma patients, and their families/whānau.

The guidelines comprise evidence-based statements that describe good-quality care and are reflective of global best practice. Where there was a lack of evidence, development was informed by expert opinion, which was arrived at by consensus. While it is acknowledged that the resources and protocols of individual centres may differ, the guidelines are intended to outline best practice and function as the evidence base for quality-improvement activities.

The content is up to date at the time of publishing, and it is intended that the guidelines be formally reviewed periodically to ensure they remain an up-to-date resource for New Zealand clinicians. However, as a living document they can be updated at any time as new evidence emerges in the prevention, diagnosis and treatment of melanoma. Skin Cancer New Zealand as the guardian of this document **welcomes any feedback** outside of formal review periods to enable this to occur.

The intention is that the clinical guidelines and good practice points in this document be used to support improvements in quality melanoma care across New Zealand, and inform and align with cancer quality improvement programmes led by New Zealand Government agencies such as **Te Aho o Te Kahu, the Cancer Control Agency**.

Each chapter follows the format below. For quick reference, a summary of good practice points is also provided at the beginning of the document.

Component	Description
Description	A concise statement that provides guidance on important elements of high-quality health care for the specific topic.
Rationale	An evidence-based description of why the clinical guideline is important, including any appropriate additional context.
Good practice points	Practice points supported by international literature or the consensus of feedback from consultation with New Zealand clinicians who are involved in providing care to patients with a specific tumour type.
References	Supporting evidence for the clinical guideline, rationale and good practice points.

Quick reference guide

The clinical guidelines and associated good practice points in this resource are summarised below, with a hyperlink to the relevant chapter.

ID	Guideline title	Description
1.1	Prevention and early detection	 Prevention and early detection of melanoma is a key priority in reducing the incidence of melanoma and improving melanoma outcomes. It is important that: there are adequate prevention strategies that seek to both inform and protect the public regarding the dangers of excessive UVR exposure and its relationship to the incidence of melanoma. people are offered information on risk factors and the early detection of melanoma there is easily accessible information about referral
		pathways for anyone who is concerned about suspicious or concerning lesions.
1.2	Training of primary health care professionals	Primary health care professionals are trained to recognise skin lesions suspicious for melanoma.
1.3	People at increased risk of melanoma	People at increased risk of melanoma are identified and offered management appropriate to their level of risk.
2.1	Timely access to services	Patients referred urgently with a high suspicion of melanoma receive their first cancer treatment within 62 days of receipt of referral. Patients referred urgently with a biopsy-confirmed or high suspicion of melanoma (including locally recurrent and metastatic melanoma and excluding melanoma in situ) have their FSA within 14 days of receipt of referral.
		Urgent diagnostic excision for lesions suspicious for melanoma occurs within 14 days of specialist assessment or image-based triage. Image-guided core or FNA biopsy of suspected regional or distant melanoma occurs within 14 days of the request being received.
		Patients should receive the results of their biopsy within ten days.
		Patients with a confirmed diagnosis of melanoma (including locally recurrent or metastatic melanoma and excluding melanoma in situ) receive their first cancer treatment within 31 days of the decision to treat.

ID	Guideline title	Description
3.1	Patient access to trained health care professionals	 Patients have access to a: health care professional trained in early detection and the diagnosis of melanoma, including the use of dermatoscopy health care professional trained in the surgical skills required to undertake excision and direct closure of in-situ or thin melanoma health care professional trained in triage and referral of patients with lesions of uncertain diagnosis, thicker melanoma and lesions at sites where surgery is difficult. melanoma CNS or nurse who specialises in cancer care to coordinate all aspects of their care between secondary and primary care. This health
3.2	Excision of melanocytic lesions	professional should be a member of the MDM. The preferred biopsy technique for excision of melanocytic lesions suspected of being melanoma is a narrow complete excision biopsy, with 2-mm margins that encompasses the entire lesion and is of sufficient depth to avoid transection at the base. All tissue specimens are sent for formalin-fixed paraffin-embedded histopathology.
3.3	Histopathological reporting	Melanoma is reported histopathologically and staged histopathologically, clinically and radiologically in accordance with the latest (8th edition) <i>AJCC Cancer Staging Manual</i> , 2017 (Amin et al 2017). The pathology report for the diagnosis of primary cutaneous melanoma and lymph node metastases is structured and includes a minimum data set for TNM staging and other variables thought to affect clinical behaviour and survival.
		Accurate pathological reporting of residual tumour after neoadjuvant therapy also provides critical prognostic information and helps inform management decisions. While guidelines are continuously being updated in this evolving field, the current International Neoadjuvant Melanoma Consortium guidelines (Tetzlaff et al 2018) provide recommendations for the sampling and structured reporting of these neoadjuvantly-treated melanomas.

ID	Guideline title	Description
3.4	Time to pathological diagnosis	A diagnosis of melanoma is reported in 5 working days in 80% of cases, and 90% of cases should have a final report in 10 working days.
		Cases requiring molecular studies or additional departmental consultation are excluded from this metric; however, these cases should have a provisional report and/or notification to the requesting clinician within 10 working days.
		Pathology departments should maintain a tracking system to monitor cases awaiting diagnosis and match diagnosis with request when received back in the department.
3.5	Sentinel node biopsy reporting	The current MIA or RCPA protocol fields are recommended for processing and reporting SNB.
3.6	Radiological staging	Radiological staging should be requested dependent on melanoma TNM status, level of risk and intended treatment.
		Accurate radiological staging is essential to guide appropriate management decisions. Recent reimbursement for systemic therapies in the perioperative setting has reinforced the importance of accurate staging to clarify local treatments such as surgery or radiation, as well as the duration of systemic treatments for those with more advanced disease.
		If patient factors/co-morbidities deem patients unfit for any further treatment, do not perform routine staging.
4.1	Multidisciplinary meetings	Patients with the following should be discussed at a MDM:
		complex reconstruction cases, including MIS
		 stages II (B and C) cases if management decisions are not straightforward
		 stages III and IV cutaneous melanoma cases
		desmoplastic melanoma
		melanoma in people under 25 years of age
		 non-cutaneous melanoma.
		The outcome of the MDM is documented and communicated to the treating clinician, GP and patient. Responsibility for informing the patient of the outcome must be confirmed during the meeting and clearly documented as part of the record.
		If the patient is not already linked in with a key contact such as a melanoma CNS or CNC, this should be raised during the meeting, offered to the patient and arranged as appropriate.

ID	Guideline title	Description
5.1	Re-excision of histopathologically confirmed melanomas	Histologically confirmed melanomas are re-excised, with additional clinical margins determined by Breslow thickness.
		Patients with a melanoma staging of T1b and greater with a SLN risk score of >5% based on the Melanoma Institute of Australia sentinel node metastasis risk prediction tool are referred to an appropriately trained and experienced surgical specialist for consideration of SNB staging at the time of the re-excision.
		A SLN may be indicated in a select group of patients with a T1a melanoma, but the validity of the SLN risk prediction tool normogram in this group is less certain.
5.2	Desmoplastic/neurotropic melanoma	The MDM discusses the potential role of radiation treatment to improve local control in patients with desmoplastic/neurotropic melanoma.
5.3	Sentinel node biopsy technique	SNB staging is considered for all patients, who could benefit from the procedure with melanoma T1b or thicker and a sentinel node risk of >5% on the Melanoma Institute of Australia sentinel node metastasis risk prediction tool . This tool should be used to guide selection for sentinel node biopsy. If risk is <5%, SNB is not recommended. When risk is between 5 and 10%, SNB should be considered. At a risk of >10% SNB is recommended if the patient is clinically appropriate.
		SNB in melanoma is carried out using triple localisation with preoperative lymphoscintigraphy and SPECT scan. Intra-operative localisation is performed with blue dye and a gamma probe.
5.4	Therapeutic/Completion lymphadenectomy	An oncological therapeutic lymphadenectomy is offered to all patients with clinically or radiologically evident nodal disease after appropriate staging and discussion at a melanoma MDM. In suitable patients this should be preceded by neoadjuvant immunotherapy.
5.5	Neoadjuvant systemic therapy in locoregionally advanced melanoma	The addition of effective systemic therapies to surgical management of patients with locoregionally advanced and resectable oligometastatic melanoma has significantly improved outcomes. Adjuvant therapy with either immune checkpoint inhibitors (ICIs) or targeted therapy with BRAF/MEK inhibitors after surgical resection of stage III/IV melanoma has been shown to improve recurrence-free survival and represents a standard of care. Subsequent phase II/III randomized trials have demonstrated neoadjuvant ICI as a superior treatment for patients with clinically detectable stage III or resectable stage IV melanoma compared with adjuvant therapy. High rates of pathological complete response (pCR) and major pathological response (MPR) are observed in patients treated with neoadjuvant ICIs, correlating with excellent survival outcomes.

ID	Guideline title	Description
5.6	Adjuvant therapy in locoregionally advanced melanoma	 All patients with resected stage III/IV melanoma or stage II (B or C) melanoma are: discussed at a melanoma MDM (if management decisions are not straightforward) considered for adjuvant systemic treatment (including enrolment in clinical trials) and adjuvant radiotherapy. Neoadjuvant immunotherapy (i.e., systemic treatment
		with immune checkpoint inhibitors (ICI) prior to curative intent surgery) is now standard of care for suitable patients with resectable stage III or resectable stage IV disease and should be considered for all suitable patients in this clinical context.
5.7	Patients with loco-regionally recurrent, locally advanced and metastatic melanoma	Patients with loco-regionally recurrent, locally advanced or metastatic melanoma are seen or discussed by melanoma specialists experienced in the care of melanoma patients and part of a melanoma MDM. Patients should be staged as per Clinical Guideline 3.6.
6.1	Clinical follow-up and surveillance	Follow-up is carried out by a health care professional experienced in melanoma diagnosis and management. The health care professional may be a specialist, GP, nurse practitioner or a combination working in conjunction with the patient and their family/whānau.
6.2	Patient self-examination	Patient self-examination is taught as integral part of melanoma follow-up.
6.3	Follow-up cross-sectional imaging	Follow-up cross-sectional imaging (CT or PET-CT) can be divided into surveillance (for those with no residual disease post-surgery and/or therapy), as monitoring/restaging during treatment or to reassess if new symptoms develop. It should be determined by stage, symptoms/clinical findings and suitability for therapy.
		Asymptomatic metastases may be appropriate for immunotherapy with a curative intent, surgery or radiotherapy. If patient factors/co-morbidities deem patients unfit for any further treatment, do not perform routine surveillance.
6.4	Ultrasound imaging of draining nodal basins	US imaging of the draining nodal basins(s) can be considered in a select group of patients, in conjunction with routine clinical follow-up \pm cross-sectional imaging as per TNM stage.
7.1	Supportive care	Patients with melanoma and their families/ whānau have equitable and coordinated access to appropriate medical, allied health and supportive care services, in accordance with <i>Guidance for Improving Supportive Care for Adults with Cancer in New Zealand</i> (Ministry of Health 2010)) and informed by Te Aho o Te Kahu – Cancer Control Agency's Cancer Action Plan 2023 – 2025

ID	Guideline title	Description
8.1	Care coordination	Patients managed by a melanoma MDT have access to a CNS, CNC or other health professional who is a member of the MDM to help coordinate all aspects of their care.
		Each treatment centre has a melanoma clinical lead to provide necessary leadership, guidance and provision of melanoma care.

CLINICAL GUIDELINE 1: Prevention and early detection

1.1: Prevention and early detection

Description

Prevention and early detection of melanoma is a key priority in reducing the incidence of melanoma and improving melanoma outcomes. It is important that:

- there are adequate prevention strategies that seek to both inform and protect the public regarding the dangers of excessive UVR exposure and its relationship to the incidence of melanoma.
- people are offered information on risk factors and the early detection of melanoma
- there is easily accessible information about referral pathways for anyone who
 is concerned about suspicious or concerning lesions.

Rationale

There is consistent evidence that the best avenues for reducing the burden of melanoma are prevention and early diagnosis (Whiteman 2017; Collins et al 2023).

The causal association of cutaneous melanoma and keratinocytic (non-melanoma) skin cancer and solar ultraviolet radiation (UVR) exposure is well established.

There is a trade-off between the risks and benefits of sun exposure which is not uniform across the New Zealand adult population. This is underscored in the paper by Neale et al. (2024). For individuals at high risk of skin cancer, the harms of exposure outweigh any benefit so sun protection is essential. In contrast, those with deeply pigmented skin are at lower risk of skin cancer but heightened risk of vitamin D deficiency; routine sun protection is not advised for them. For individuals at intermediate risk, sun protection remains important, but some sun exposure may be sufficient to maintain adequate vitamin D levels.

There is strong evidence that exposure to UVR in artificial tanning devices (such as sunbeds and tanning units) causes DNA damage that can lead to the development of both melanoma and keratinocytic skin cancers. The risk increases with greater use and an earlier age at first use (Boniol et al 2012).

Recent evidence underscores the effectiveness of comprehensive prevention programmes combining public education, UV index awareness, sun-protective behaviours, and targeted outreach to high-risk populations, including outdoor workers and those with a family history of melanoma (Collins et al 2024). Mobile health technologies and Al-assisted dermoscopy show promise in supporting earlier detection, especially in rural or underserved communities. (Sales 2025).

Evidence shows that while melanoma is uncommon in Māori, they are more likely to be diagnosed with higher stage melanoma with poorer survival than non-Māori (Sneyd et al 2009, Hore et al 2010, Sneyd et al 2011, Win Myint et al 2022).

Rationale (continued)

There is a need for raised awareness among Māori and other ethnic minorities as well as health practitioners and health systems to aid early detection of skin cancer and improve overall outcomes.

Melanoma is best detected early at the in-situ pre-invasive stage. This avoids disease progression to advanced stages that requires excessive resourcing and a poorer outcome in terms of morbidity and mortality for patients. The prognosis for melanoma less than 1 mm thick is generally good; however, many patients with thin melanomas often only experience complications/progression between 5 and 15 years after initial diagnosis and therefore require long-term follow-up (Lo et al 2018). It is well documented that survival decreases with increasing thickness of the primary melanoma (Melanoma Network of New Zealand 2024).

Early detection with full-body skin checks, utilising dermatoscopy and digital dermatoscopy is best practice. Clinicians performing skin examinations for the purpose of detecting skin cancer should be trained in and use dermatoscopy (Melanoma Network of New Zealand 2024).

Good practice points

1.1.1 People are advised as follows:

- exposure to UVR when the ultraviolet index (UVI) is 3 or higher or when spending time outdoors for extended periods of time should be limited and sunburn avoided.
- brief sun exposure is needed to maintain vitamin D levels; total lack of sun exposure is not advisable without vitamin D supplementation.
- the use of artificial tanning devices is illegal for those under the age of 18 years and is strongly discouraged for those 18 years and over. Solaria for cosmetic purposes (Standards Australia/Standards New Zealand 2008) specifies that those under the age of 18 years and those with skin phototype 1 should not use sunbeds. Those 18 years and over should be informed of the risks and lack of evidence for any health benefits. The NMWG supports the position taken by the Cancer Society of NZ, Cancer Council Australia and the Australasian College of Dermatologists that commercial artificial tanning devices should be banned.
- when the UV index is forecast to reach three or above or when people are outside for extended periods, UVR protection should be adopted by:
 - slipping on a shirt with long sleeves and a collar
 - slipping into shade
 - slopping on sunscreen that is ideally SPF 50, broad spectrum and water resistant at least 20 minutes before going outside and reapplying every 2 hours especially after being in the water or sweating
 - slapping on a wide-brimmed hat that shades the face, head, neck and ears
 - wrapping on close-fitting wrap-around style sunglasses that meet the standards (Standards Australia/Standards New Zealand 1067.1 and 1067.2:2016).

1.1.2 Prevention strategies include:

 schools and other education settings having a sun protection policy, using sun protection practices and participating in the Cancer Society Sunsmart Schools accreditation programme.

Good practice points (continued)

- comprehensive workplace policies and programmes, especially for outdoor workplaces (Health and Safety at Work Act 2015).
 Workplaces should be supported to implement SunSmart policies to guide best practice in scheduling work, personal protective equipment and skin checks.
- quality shade structures factored into planning of public areas such as sports facilities, recreation spaces, education spaces, workplaces and private areas.
- require national and local government to develop and implement comprehensive policies and public awareness campaigns.
- sunscreens being included as a therapeutic product to ensure quality standards of being fit for purpose (Standards Australia/Standards New Zealand 2604:2021)
- UPF-rated clothing and sun protective hats (Standards Australia/Standards New Zealand 4399:2017).
- public awareness campaigns supporting UV index awareness, sun protective behaviours and detection of melanoma at an early stage in a range of settings.
- 1.1.3 All adults, particularly those aged 50 years and over, are advised to:
 - regularly examine their skin (including skin not normally exposed to the sun) so they improve their awareness of any changes
 - get someone else to check areas that are difficult to see, such as their back
 - seek advice from a primary health care professional, surgeon, dermatologist or nurse specialist about suspicious lesions. Smartphone applications should not be a substitute for a skin examination by a medical practitioner.
- 1.1.4 Information aimed at reducing melanoma deaths focuses on:
 - all adults; particularly males aged 50 years and over
 - raising awareness of melanoma in Māori and other ethnic minorities, including the specific features of nodular and acral lentiginous melanoma
- 1.1.5 Information developed for or provided to patients and their families/whānau aligns with core messages in the *Skin Cancer Prevention* and *Early Detection Strategy 2024 2028* (Melanoma Network of New Zealand 2024).

- Behara K, Bhero E, Agee JT. 2024. Al in dermatology: a comprehensive review into skin cancer detection. Dermatol Pract Concept. 14(3):e2024143.
- Best Practice Advocacy Centre New Zealand. 2025. Vitamin D supplementation: an update. bpacnz. March 2025. Available from: https://bpac.org.nz/2025/vitamind.aspx
- Boniol M, Autier P, Boyle P, Gandini S. 2012. Cutaneous melanoma attributable to sunbed use: Systematic review and meta-analysis. BMJ;345:e4757.
- Collins LG, Minto C, Ledger M, et al. 2024. Cost-effectiveness analysis and return on investment of SunSmart Western Australia to prevent skin cancer. *Health Promotion Int.* 39(4): daae091.
- DermNet New Zealand Trust. Vitamin D [Internet]. DermNet NZ; 2023 [cited 2025 Aug 17].
 Available from: https://dermnetnz.org/topics/vitamin-d

- Hore T, Robinson E, Martin RCW. 2010. Malignant melanoma amongst Māori and New Zealand Europeans, 2000 – 2004. World J Surg 34(8): 1788–92.
- Kift RC, Webb AR. 2024. Globally estimated UVB exposure times required to maintain sufficiency in vitamin D levels. *Nutrients*. 6(10):1489.
- Lo S, Scolyer R, Thompson J. 2018. Long-term survival of patients with thin (T1) cutaneous melanomas: a Breslow thickness cut point of 0.8 mm separates higher-risk and lower-risk tumors. *Annals of Surgical Oncology* 25(4): 894–902.
- Melanoma Network of New Zealand. 2024. Skin Cancer Prevention and Early Detection Strategy 2024 - 2028. Christchurch: Melanoma Network of New Zealand. URL: https://melnet.org.nz/clinical-resources-and-research/prevention-and-early-detectionstrategy.
- Ministry of Health. 2019. New Zealand Cancer Action Plan 2019–2029 Te Mahere mō te Mate Pukupuku o Aotearoa 2019–2029. Revised January 2020 Wellington: Ministry of Health.
- Ministry of Health. 2012. The Consensus Statement on Vitamin D and Sun Exposure in New Zealand. Wellington: Ministry of Health. URL: www.health.govt.nz/system/files/documents/publications/vitamind-sun-exposure.pdf.
- Neale RE, Beedle V, Ebeling PR et al. (2024) *Balancing the risks and benefits of sun exposure: A revised position statement for Australian adults*. Aust N Z J Public Health. Feb;48(1):100117.
- Petrunoff N, Harley S, du Toit A, et al. 2024. Sun safety intervention effectiveness in primary and secondary school settings: A realist review prepared by the Sax Institute for Cancer Council NSW. Available from: https://www.cancercouncil.com.au/wp-content/uploads/2024/09/Review-of-sun-safety-interventions-in-schools_Full-report.pdf
- Sales C, Coates SJ. 2025. Applications of Artificial Intelligence for High-Burden, Underserved Skin Diseases in Global Settings: a Review. *Curr Derm* Rep 14, 14 (2025). https://doi.org/10.1007/s13671-025-00469-9
- Sneyd MJ, Cox B. 2009. Melanoma in Māori, Asian, and Pacific peoples in New Zealand. Cancer Epidemiol Biomarkers Prev 18(6): 1,706-13.
- Sneyd MJ, Cox B. 2011. Clinical and histologic factors associated with melanoma thickness in New Zealand Europeans, Māori, and Pacific peoples. *Cancer* 117: 2,489–98.
- Standards Australia/Standards New Zealand. 2008. *Australian/New Zealand Standard AS/NZS 2635 (Solaria for cosmetic purposes)*. Sydney: Standards Australia and Wellington: Standards New Zealand. URL: https://www.standards.govt.nz/shop/asnzs-26352008/.
- Standards Australia/Standards New Zealand. 2016. Australian/New Zealand Standard AS/NZS AS/NZS 1067.1:2016 (Eye and face protection Sunglasses and fashion spectacles Part 1: Requirements). Sydney: Standards Australia and Wellington: Standards New Zealand. URL: https://www.standards.govt.nz/shop/asnzs-1067-12016/.
- Standards Australia/Standards New Zealand. 2016. Australian/New Zealand Standard AS/NZS 1067.2:2016 (Eye and face protection Sunglasses and fashion spectacles Part 2: Test methods). Sydney: Standards Australia and Wellington: Standards New Zealand. URL: https://www.standards.govt.nz/shop/asnzs-1067-22016/.
- Standards Australia/Standards New Zealand. 2017. Australian/New Zealand Standard AS/NZS 4399:2017 (Sun protective clothing Evaluation and classification). Sydney: Standards Australia and Wellington: Standards New Zealand. URL: https://www.standards.govt.nz/shop/asnzs-43992017/.
- Standards Australia/Standards New Zealand. 2021. Australian/New Zealand Standard AS/NZS 2604:2021(Sunscreen Products Evaluation & Classification) Sydney: Standards Australia and

Wellington: Standards New Zealand. URL: https://www.standards.govt.nz/shop/asnzs-26042021/.

- Te Aho o Te Kahu. 2022. Pūrongo Ārai Mate Pukupuku, Cancer Prevention Report. Wellington: Te Aho o Te Kahu, Cancer Control Agency.
- Whiteman D. 2017. The epidemiology of melanoma: Recent changes and future challenges. Journal of the European Academy of Dermatology and Venereology 31(S3): 3.
- Win Myint TT, Selak V, Elwood M (2022) The risk of subsequent invasive melanoma after a primary in situ or invasive melanoma in a high incidence country (New Zealand). Skin Health Dis: 2(3):e116.

1.2: Training of primary health care professionals

Description

Primary health care professionals are trained to recognise skin lesions suspicious for melanoma.

Rationale

Primary health care professionals play an important role in the opportunistic discovery of melanoma and non-melanoma skin cancer as part of their everyday practice. Therefore, it is essential they have the competence to identify lesions suspicious of malignancy.

The use of dermatoscopy as part of a full skin examination increases the likelihood of identifying thin and in-situ melanoma and reduces the unnecessary removal of benign lesions (Kittler et al 2002). All specialist general practitioners are expected to be trained in dermatoscopy, either during vocational training or as part of continuing professional development. Other primary and secondary care practitioners involved in skin cancer care—particularly early melanoma detection and follow-up of melanoma patients—should also undertake such training.

Recent studies have emphasized the importance of continuous training and the integration of advanced technologies in melanoma diagnosis. A 2024 study highlighted the effectiveness of training general practitioners in dermoscopy using an elearning educational tool, demonstrating improved diagnostic accuracy and confidence among participants (Friche et al. 2024). Additionally, a 2023 protocol for a systematic review underscored the necessity of evaluating the impact of various training programs on the competence of healthcare professionals in melanoma detection (McCaffrey et al. 2023).

Novel artificial or augmented intelligence tools are available to assist in the classification of suspicious skin lesions. Clinical validation is incomplete in local settings and such tools should be used with caution; they are likely to be increasingly useful for triage of high-risk lesions alongside expert dermatoscopic analysis to enhance current clinical practices (Ferrante di Ruffano et al 2018, Haggenmüller et al 2021).

Good practice points

- 1.2.1 All primary health care professionals are knowledgeable about the most precise methods to estimate a patient's risk of melanoma, and about subtypes of melanoma.
- 1.2.2 All primary health care professionals are alert for skin lesions with malignant features in the context of physical examinations performed for other reasons.
- 1.2.3 All primary health care professionals should be trained in the use of the dermatoscope and regularly undertake refresher training. Training programmes should include dermatoscopy e-learning modules to complement traditional methods and improve diagnostic accuracy.
- 1.2.4 As part of diagnosing a skin lesion, clinicians arrange to carry out a full skin check by themselves or another healthcare professional.
- 1.2.5 Teledermatology and e-referral systems should be implemented to allow accurate triage and therefore expedite management of atypical pigmented lesions.

Good practice points (continued)

- 1.2.6 Validated artificial intelligence tools are used alongside expert dermatoscopic analysis to enhance current clinical best practice. Clinicians should be aware that a proportion of melanoma in situ diagnoses may represent overdiagnosis, with consequent risks of overtreatment, patient anxiety, and increased resource use. In the context of emerging artificial intelligence tools for early melanoma detection, it is essential that any new technology undergo robust clinical validation to ensure it improves diagnostic specificity without exacerbating overdiagnosis, before it is adopted as part of day-to-day practice.
- 1.2.7 All allied professionals who come into contact with people's skin have access to training in recognising skin changes suggestive of melanoma and in advising patients with suspicious lesions to see a health care professional.
- 1.2.8 Population-based skin screening is not recommended at this time in the absence of substantive evidence as to its effectiveness in reducing mortality.

- Aitken JF, Elwood M, Baade PD, et al. 2009. Clinical whole-body skin examination reduces the incidence of thick melanomas. *Int J Cancer* 126(2): 450–58.
- Ferrante di Ruffano L, Takwoingi Y, Dinnes J, et al. 2018. Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults. Cochrane Database Syst Rev 12(12): CD013186.
- Friche P, et al. 2024. Training Family Medicine Residents in Dermoscopy Using an elearning Based Educational Tool. *JMIR Formative Research* 8(1): e56005.
- Haggenmüller S, Maron RC, Hekler A, et al. 2021 Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts. Eur J Cancer 156: 202– 216.
- Harkemanne E, Baeck M, Tromme I. 2021. Training general practitioners in melanoma diagnosis: a scoping review of the literature. *BMJ Open* 11(3): e043926.
- Johansson M, Brodersen J, Gøtzsche PC, et al. 2019. Screening for reducing morbidity and mortality in malignant melanoma. *Cochrane Database Syst Rev*. DOI: http://dx.doi.org/10.1002/14651858.CD012352.pub2
- Kittler H, Pehamberger H, Wolff K, et al. 2002. Diagnostic accuracy of dermoscopy. *Lancet Oncol* 3(3): 159–65.
- McCaffrey N, et al. 2023. Protocol for a systematic review of reviews on training healthcare professionals in melanoma detection. BMJ Open 13(12): e079052.
- Melanoma Taskforce. 2012. Mole and Skin Check Guidelines: Information on the signs of skin cancer for wellbeing, hair and beauty professionals. London: Melanoma Taskforce and British Association of Dermatologists. URL: www.bad.org.uk/skin-cancer.
- Sheerin J, Collgros H, Chamberlain A et al. 2025. A clinical perspective on melanoma overdiagnosis. *Australasian J Dermatol*. Aug 12.

1.3: People at increased risk of melanoma

Description

People at increased risk of melanoma are identified and offered management appropriate to their level of risk.

Rationale

While identification of those at increased risk for melanoma provides the potential to focus early detection and prevention, at present, it is not possible to identify the absolute risk of an individual developing melanoma. There is no evidence to compare the relative effectiveness of specific surveillance techniques for high-risk patients with those for average-risk patients.

Increased age, skin phototype and sun damage are important risk factors for melanoma. Other factors that should be considered in clinical risk assessment include a personal history of melanoma, familial melanoma, large numbers of naevi, FAMM syndrome, previous non-melanoma skin cancer and immunosuppression (for example, in organ transplant recipients) (Melanoma Network of New Zealand 2024).

Large CMN > 20 cm in diameter have an increased risk of developing melanoma and neurocutaneous melanocytosis (Hale et al 2005; Krengel et al 2006).

Sequential digital epiluminescent microscopy (SDELM) relies on taking and storing macroscopic and dermoscopic images of lesions of concern and repeating photos of these specific lesions over time to look for change. SDELM has been studied extensively over the past two decades. SDELM with short term monitoring (three months between images) has a sensitivity of 94% in diagnosing melanoma (excluding lentigo maligna which needs longer intervals) and specificity of 84% (Altamura et al 2008). SDELM not only allows the diagnosis of melanoma at an earlier stage than clinical examination alone but can also detect melanoma before they exhibit characteristic dermoscopic changes – one study demonstrated that 11% of changed lesions seen through SDELM over a three-month period were melanoma with none of them demonstrating classical dermoscopy features (Menzies et al 2001). SDELM has been shown to diagnose 20-50% of lesions that traditional epiluminescent microscopy could not diagnose with a single examination and melanoma diagnosed by SDELM are shown to be significantly thinner than those diagnosed by other means (0.41mm average vs 0.62mm Breslow thickness) (Haenssle et al 2010).

Al-based skin cancer diagnostic tools are encouraging advances, yet deployment without real-world, prospective validation may lead to unintended harmssuch as over-referral, misdiagnosis, patient distress and unnecessary cost. As highlighted by Brancaccio et al. (2024), real-world performance often lags behind controlled testing benchmarks. The Australasian College of Dermatologists (2025) insists that only TGA-approved Al systems that demonstrably augment clinician performance should be implemented and even then, as augmentative aids, not replacements for clinical judgement. Ethical principles of transparency, safety, equity, privacy, and accountability must underpin Al adoption in dermatology

Good practice points

1.3.1 Health care professionals assess patients for future risk of melanoma using validated risk factors and a model that integrates personal risk factors into an overall index of risk. Appropriate and validated risk factors and model are provided at the website of the Melanoma Institute Australia (www.melanomarisk.org.au). Note: New Zealanders will need to enter 'Tasmania' as the 'Region in Australia most lived in' to ensure they receive an appropriate risk profile.

Good practice points (continued)

- 1.3.2 Individuals with two or more first-degree relatives with a history of melanoma at younger than 40 years of age and those found to have melanoma and/or multiple atypical naevi are examined carefully and:
 - are placed under the long-term care of a health care professional who is competent in skin surveillance using dermatoscopy and digital dermatoscopy monitoring
 - are considered for referral to regional clinical genetics services for further assessment, genetic counselling and discussion about genetic testing (rarely indicated) particularly those with multiple atypical naevi, are considered for baseline total body photography and highquality sequential digital dermatoscopy imaging at 6- to 12-month intervals to detect new and changing lesions.
 - patients at high risk for melanoma should be encouraged to have high quality photographic images of all portions of their body. These are used by the patient to monitor for new or changing moles between skin checks. Provision of sequential digital epiluminescent microscopy (SDELM) should be considered best practice in clinics providing specialist services for skin malignancy screening.

- Altamura D, Avramidis M, Menzies SW. 2008. Assessment of the optimal interval for and sensitivity of short-term sequential digital dermoscopy monitoring for the diagnosis of melanoma. Arch Dermatol 144(4):502-506.
- Australasian College of Dermatologists. 2025. Use of Artificial Intelligence in Dermatology in Australia [position statement]. Sydney: Australasian College of Dermatologists. Available from: ACD-Position-Statement-Use-of-Al-in-Dermatology-in-Australia-July-2025.pdf.
- Brancaccio G, Balata A, Malvehy J, et al. 2024. Artificial Intelligence in Skin Cancer Diagnosis: A Reality Check. *Journal of Investigative Dermatology* 144(3):492-499.
- Hale EK, Stein J, Ben Porat L, et al. 2005. Association of melanoma and neurocutaneous melanocytosis with large congenital melanocytic naevi-results from the NYU-LCMN registry. British Journal of Dermatology 152(3): 512–17.
- Haenssle HA, Korpas B, Hansen-Hagge C et al. 2010. Selection of patients for long-term surveillance with digital dermoscopy by assessment of melanoma risk factors. *Arch Dermatol*. 146(3):257-64.
- Krengel S, Hauschild A, Schafer T. 2006. Melanoma risk in congenital melanocytic naevi: a systematic review. *British Journal of Dermatology* 155(1): 1–8.
- Melanoma Network of New Zealand. 2024. Skin Cancer Prevention and Early Detection Strategy 2024 - 2028. Christchurch: Melanoma Network of New Zealand. URL: https://melnet.org.nz/clinical-resources-and-research/prevention-and-early-detectionstrategy
- Menzies SW, Gutenev A, Avramidis M et al. 2001. Short-term Digital Surface Microscopic Monitoring of Atypical or Changing Melanocytic Lesions. *Arch Dermatol.* 137(12):1583–1589.
- Salerni G, Carrera C, Lovatto L, et al. 2012. Benefits of total body photography and digital dermatoscopy ('two-step method of digital follow-up') in the early diagnosis of melanoma in patients at high risk for melanoma. *J Am Acad Dermatol* 67(1): e17–27.
- Sneyd MJ, Cameron C, Cox B. 2014. Individual risk of cutaneous melanoma in New Zealand: developing a clinical prediction aid. *BMC Cancer* 14: 359.

CLINICAL GUIDELINE 2: Timely access to services

2.1: Timely access to services

Description

Patients referred urgently with a high suspicion of melanoma receive their first cancer treatment within 62 days of receipt of referral.

Patients referred urgently with a biopsy-confirmed or high suspicion of melanoma (including locally recurrent and metastatic melanoma and excluding melanoma in situ) have their FSA within 14 days of receipt of referral.

Urgent diagnostic excision for lesions suspicious for melanoma occurs within 14 days of specialist assessment or image-based triage. Image-guided core or FNA biopsy of suspected regional or distant melanoma occurs within 14 days of the request being received.

Patients should receive the results of their biopsy within ten days.

Patients with a confirmed diagnosis of melanoma (including locally recurrent or metastatic melanoma and excluding melanoma in situ) receive their first cancer treatment within 31 days of the decision to treat.

Rationale

Timely access to quality cancer management is important to support good health outcomes for New Zealanders and to reduce inequities.

Key components of successful cancer management include early recognition and reporting of symptoms, expertise in identifying patients requiring prompt referral and rapid access to investigations and treatment.

A suspicion of melanoma or melanoma diagnosis is very stressful for patients and their family/whānau. It is important that patients, family/whānau and GPs know how quickly patients can receive treatment. Long waiting times may affect local control and survival benefit for some patients with melanoma, and can result in delayed symptom management for palliative patients.

The good practice points in this chapter ensure that:

- patients receive quality clinical care
- patients are managed through the pathway, and experience wellcoordinated service delivery
- delays are avoided as far as possible

Shorter waits for cancer treatments is a government health target for all radiation treatment patients and chemotherapy patients. The FCT indicators adopt a timed patient pathway approach across surgical and non-surgical cancer treatment, and apply to inpatients, outpatients and day patients.

Timely access to services is especially important to address inequities. It is well demonstrated that Māori tend to wait longer for cancer care and have worse outcomes. A major goal of these guidelines is to address this issue.

Good practice points

- 2.1.1 The FCT indicators exclude melanoma in situ.
- 2.1.2 Referral is ideally electronic, with (high-quality macroscopic and/or dermatoscopic) images of the lesion, including a ruler, attached.

 Suspicious lesions can then be triaged directly for diagnostic excision.
- 2.1.3 Teledermatoscopy reports are received by the referrer within five working days of the examination being performed.
- 2.1.4 Reports are distributed electronically.
- 2.1.5 'High suspicion of melanoma' refers to skin lesions likely to be invasive tumours; usually >6mm in diameter and irregular in structure and colour. There is often a reliable history of change over several months of observation or observed by digital dermatoscopic surveillance.
- 2.1.6 Staging investigations should be ordered and completed within two weeks of the specialist's assessment.
- 2.1.7 Radiotherapy should occur within six weeks of decision to treat, earlier if clinically urgent.
- 2.1.8 Systemic therapy should occur within twelve weeks of definitive surgery or if not post operative should begin within four weeks of decision to treat.
- 2.1.9 Neoadjuvant therapy should begin within two weeks of decision to treat by both surgeon and oncologist.

CLINICAL GUIDELINE 3: Investigation, diagnosis and staging

3.1: Patient access to trained health care professionals

Description

Patients have access to a:

- health care professional trained in early detection and the diagnosis of melanoma, including the use of dermatoscopy
- health care professional trained in the surgical skills required to undertake excision and direct closure of in-situ or thin melanoma
- health care professional trained in the triage and referral of patients with lesions of uncertain diagnosis, thicker melanoma and lesions at sites where surgery is difficult
- melanoma CNS or nurse who specialises in cancer care to coordinate all aspects of their care between secondary and primary care. This health professional should be a member of the MDM.

Rationale

Early detection of melanoma requires differentiating lesions with minor atypical features and/or documented changes from benign lesions.

Trained health care professionals can detect thinner (that is, more favourable prognosis) melanomas than the patient or another layperson might be able to detect. Where health care professionals are trained in the technique, dermatoscopy improves diagnostic accuracy and reduces removal of benign lesions that do not have suspicious features (Swetter et al 2019).

While Al-assisted diagnostic tools show promise, evidence from real-world settings demonstrates that performance often falls short of controlled research environments, potentially leading to over-referral, unnecessary patient anxiety, and increased costs (Brancaccio et al, 2024). Al tools must undergo rigorous, prospective validation and obtain regulatory approval before adoption in clinical practice. Where used, Al should augment, not replace, clinician judgement (Australasian College of Dermatologists, 2025).

Care coordination intended to improve equitable access to services and resources, improve communication and the transfer of information between services; recognising the complexity of the cancer journey. The coordination role includes provision of information and education and acts a single point of contact for patients and their family/whānau.

Good practice points

- 3.1.1 In primary health care practices, access to at least one designated primary health care professional trained in the dermatoscopic diagnosis and management of melanoma. Practices with solo practitioners who do not have this training should promptly refer patients to a trained clinician.
- 3.1.2 Assessment includes family history, ethnicity, history of change, symptoms and the time course of symptoms.
- 3.1.3 For the purpose of detecting melanoma, the whole skin surface is examined under good lighting.
- 3.1.4 High-quality digital macroscopic and dermatoscopic images of lesions suspicious for melanoma are used to obtain second opinions and for clinicopathological correlation.
- 3.1.5 Sequential digital dermatoscopic imaging may be used to detect changes in suspicious flat melanocytic lesions lacking dermatoscopic features of melanoma when monitored short-term (that is, over 3 months).
- 3.1.6 Suspicious raised lesions should be excised and not monitored.
- 3.1.7 Health care professionals should not rely solely on the use of automated or artificial intelligence-based instruments to diagnose primary melanoma.
- 3.1.8 Regional cancer centres employ a melanoma nurse specialist. The nurse will have the appropriate training and knowledge to provide patients and their family/whānau with information specific to the process involved in diagnosis and treatment of melanoma.
- 3.1.9 Information provided is free, easily accessible and meets the needs of the individual. Such information is accurate, unbiased, culturally appropriate and is evidence-based practice.

- Australasian College of Dermatologists. 2025. Use of Artificial Intelligence in Dermatology in Australia [position statement]. Sydney: Australasian College of Dermatologists. Available from: ACD-Position-Statement-Use-of-Al-in-Dermatology-in-Australia-July-2025.pdf
- Brancaccio G, Balata A, Malvehy J, et al. 2024. Artificial Intelligence in Skin Cancer Diagnosis: A Reality Check. *Journal of Investigative Dermatology* 144(3):492-499.
- Swetter SM, Tsao H, Bichakjian CK, et al. 2019. Guidelines of care for the management of primary cutaneous melanoma. *Journal of the American Academy of Dermatology* 80(1): 208–50.

3.2: Excision of melanocytic lesions

Description

The preferred biopsy technique for excision of melanocytic lesions suspected of being melanoma is a narrow complete excision biopsy with 2-mm margins that encompasses the entire lesion and is of sufficient depth to avoid transection at the base.

All tissue specimens are sent for formalin-fixed paraffin-embedded histopathology.

Rationale

Histopathological diagnosis requires evaluation of the architecture and cytology of the entire lesion.

Evaluation of the architecture and cytology may not be achievable using the following procedures:

- Partial biopsies of atypical lesions may miss a small focus of melanoma.
- Partial biopsies with a punch device are at risk of sampling error.
- Shave biopsies prevent accurate measurement of a Breslow thickness affecting future management decisions regarding width of wide local excisions and suitability for SNB.
- Wide initial excisions, or complex wound closures should be avoided as the
 use of flaps or significant undermining disrupt lymphatics, thereby reducing
 the accuracy of SNB and potentially compromising future reconstruction
 (Gannon et al 2006).
- A greater than 2-mm margin on the initial excisional specimen will increase the difficulty of the closure after further wide local excision.

Good practice points

- 3.2.1 Suspicious lesions should be excised within 2 weeks of being identified.

 Alternatively, if the patient is referred to a melanoma specialist for excision, this should be actioned as soon as the biopsy result is available.
- 3.2.2 The clinical request form accompanying specimens submitted for biopsy is important for the accurate diagnosis of skin lesions. It should include a history, the specimen site, the type of biopsy and clinical/dermatoscopic description of the lesion. Where possible, especially for borderline lesions, clinical and dermatoscopic images, and/or an annotated diagram highlighting specific areas of concern within the lesion, are included.
- 3.2.3 A synoptic melanoma report (such as those developed by the Royal College of Pathologists of Australasia (RCPA) (see Appendix 3) or the College of American Pathologists (CAP) is strongly recommended for routine use.
- 3.2.4 Partial/incomplete sampling (incisional biopsy) is acceptable in select clinical circumstances, such as facial or acral location, very large lesion or low clinical suspicion or uncertainty of diagnosis.
- 3.2.5 When an incisional biopsy, rather than an excisional biopsy, is taken, this must be highlighted on the pathology form and a request for longitudinal sectioning should be made.

Good practice points (continued)

- 3.2.6 Narrow-margin excisional biopsy may be performed if an initial partial biopsy is inadequate for diagnosis or microstaging, but it should not generally be performed if the initial specimen meets the criteria for consideration of SLNB.
- 3.2.7 Excisional biopsies must be performed considering the need for future wide local excision. Excision biopsies on the extremities should be longitudinally orientated following the direction of lymphatic flow. In most cases, this will also facilitate the closure should a wide local excision be subsequently required.
- 3.2.8 The use of skin flaps and grafts to close diagnostic excisional biopsy defects should be avoided.
- 3.2.9 Practitioners should record and audit their number needed to excise (query melanoma) to melanoma ratio (severe atypia/MIS/melanoma).
- 3.2.10 Use of 'derm dotting' by applying coloured nail varnish via a toothpick or a fine brush on the areas showing dermatoscopically concerning features can help pathologists make more accurate diagnoses.

- Gannon CJ, Rousseau DL, Ross MI, et al. 2006. Accuracy of Lymphatic Mapping and Sentinel Lymph Node Biopsy After Previous Wide Local Excision in Patients With Primary Melanoma. Cancer 107(11): 2647-52
- Paul SP. 2018. Biodynamic excisional skin tension lines for surgical excisions: untangling the science. *Annals of the Royal College of Surgeons England* 100: 330–337.

3.3: Histopathological reporting

Description

Melanoma is reported histopathologically and staged histopathologically, clinically and radiologically in accordance with the latest (8th edition) AJCC Cancer Staging Manual 2017 (Amin et al 2017). The pathology report for the diagnosis of primary cutaneous melanoma and lymph node metastases is structured and includes a minimum data set for TNM staging and other variables thought to affect clinical behaviour and survival.

Accurate pathological reporting of residual tumour after neoadjuvant therapy also provides critical prognostic information and helps inform management decisions. While guidelines are continuously being updated in this evolving field, the current International Neoadjuvant Melanoma Consortium guidelines (Tetzlaff et al 2018) provide recommendations for the sampling and structured reporting of these neoadjuvantly-treated melanomas.

Rationale

Formal staging of cancer is fundamental in providing clinicians and patients with prognostic information, developing treatment strategies and directing and analysing clinical trials. Staging of cutaneous melanoma continues to evolve through identification and careful analysis of potential prognostic factors (Gershenwald et al 2017).

Pathologic assessment of a tissue biopsy is a critical aspect in the multidisciplinary management of melanoma patients. Such assessment establishes a definitive diagnosis in most cases, and provides information that, to a major extent, influences patient prognosis and directs the next stages of management.

Neoadjuvant immunotherapy is now a treatment option in New Zealand for patients with stage IIIB melanoma or higher. After neoadjuvant immunotherapy, the lesion (either the primary lesion, in-transit mets, or involved lymph nodes) will undergo surgical excision. When these specimens arrive at the histopathology lab, they are sampled in a specific way. The pathologists are then able to provide a measure of treatment effect in these specimens (Tetzlaff et al 2018). The measure of treatment response can provide overall prognostic information (Blank et al 2024), as well as help inform decisions about on-going treatment options (Da Silva et al 2024).

Consistency of reporting is improved by the use of discrete data elements. Structured pathology reports are more likely to be complete and therefore more usable for clinicians' purposes, which also improves decision-making for melanoma treatment. This type of reporting also allows for easy retrieval of data elements for a variety of uses, including audit, the NZCR and research. Synoptic reports may include a 'comments' or 'microscopic' section, which allows description of an unusual morphology and immunohistochemical stains.

Good practice points

- 3.3.1 The AJCC guidelines are adopted.
- 3.3.2 The lesion is sectioned and examined histologically after formalin fixation and paraffin embedding.
- 3.3.3 For accurate assessment of T1a, T1b and T2 lesions, at least three levels (not simply serial sections) of the biopsy tissue are examined. Breslow thickness in lesions in and around the 1-mm mark is critical for T1–T2 staging. Three levels are commonly obtained, and multiple are recommended.
- 3.3.4 Pathologists reporting melanocytic lesions and melanoma have undergone adequate training, participate in regular continuing medical education in this field and have ready access to a second opinion for difficult cases.
- 3.3.5 A synoptic melanoma report for melanoma primaries such as that developed by the RCPA or CAP is strongly recommended for routine use to support national consistency and the NZCR database (see **Appendix 3** for the RCPA form for fields required).
- 3.3.6 An indication as to whether the case has been reported to the NZCR is included on the report.
- 3.3.7 If immunotherapy has been given prior to surgical resection of the lesion:
 - this should be documented on the lab form submitted with the specimen.
 - specimens should be sampled according to International Neoadjuvant Melanoma Consortium (INMC) guidelines NB: These guidelines may be updated in the near future, as research suggests that more limited sampling can still accurately reflect treatment response.
 - specimens should be reported as per INMC guidelines. This provides
 information on whether the tumour shows any treatment response.
 Depending on the percentage of viable tumour, tumour can show a
 pathologic complete response (pCR), partial pathologic response (pPR),
 or no response to the neoadjuvant immunotherapy.
- 3.3.8 Recommendations based on the current literature for diagnostic, prognostic and therapeutic molecular testing are as follows:
 - ancillary diagnostic molecular techniques (for example, CGH, FISH, GEP) may be used to assist diagnosis for equivocal melanocytic neoplasms.
 - routine molecular testing, including GEP, for prognostication is discouraged until better use criteria are defined. The application of molecular information for clinical management, for example, sentinel lymph node eligibility, follow-up and/or therapeutic choice is not recommended beyond a clinical study or trial.
 - testing of the primary cutaneous melanoma for oncogenic mutations (for example, BRAF, NRAS) is not recommended in the absence of metastatic disease. There is insufficient evidence to recommend routine molecular profiling assessment for baseline prognostication. Evidence is also lacking around the use of molecular classification to alter patient management beyond current guidelines (for example, NCCN and AAD).
 - molecular BRAF testing should be performed for stage III and IV patients if it will impact future management, that is, use of BRAF/MEK inhibitors.

- Amin MB, Greene FL, Edge SB, et al. 2017. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more 'personalized' approach to cancer staging. CA: A Cancer Journal for Clinicians 67(2): 93–9.
- Blank, CU, Lucas MW, Scolyer RA, et al. 2024. Neoadjuvant Nivolumab and Ipilimumab in Resectable Stage III Melanoma. The New England journal of medicine. Advance online publication. https://doi.org/10.1056/NEJMoa2402604.
- Da Silva I, Grover P, Adegoke P, et al. 2024, Neoadjuvant immunotherapy (neoIT) in melanoma: A
 prediction tool for pathological response and recurrence, and the role of adjuvant (Adj) therapy
 (Tx) to improve recurrence-free survival (RFS). JCO 42, 9579-9579
- Gershenwald J, Scolyer R, Hess K, et al. 2017. Melanoma staging: evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA: A Cancer Journal for Clinicians 67(6): 472–92.
- Tetzlaff MT, Messina JL, Stein JE et al. 2018. Pathological assessment of resection specimens after neoadjuvant therapy for metastatic melanoma. *Ann Oncol. 29(8):1861-1868*. doi: 10.1093/annonc/mdy226. PMID: 29945191; PMCID: PMC6096739.

3.4: Time to pathological diagnosis

Description	A diagnosis of melanoma is reported in 5 working days in 80% of cases, and 90% of cases should have a final report in 10 working days. Cases requiring molecular studies or additional departmental consultation are excluded from this metric; however, these cases should have a provisional report and/or notification to the requesting clinician within 10 working days. Pathology departments should maintain a tracking system to monitor cases awaiting diagnosis and match diagnosis with request when received back in the department.	
Rationale	A diagnosis of melanoma is an important first step in management and, as for all malignant diagnoses, a timely report is highly desirable. A target of five working days for 80% of cases allows for courier transport, adequate fixation of the specimen before sectioning, tissue processing and special stains (not for molecular testing where necessary), and finally examination by the pathologist, transcription and report release (Royal College of Pathologists of Australasia 2020). Additional immunohistochemical or molecular testing and referral to other colleagues in the same department, city or overseas for confirmation / expert opinion of the lesion may take longer than the prescribed limits. If the case is likely to take more than 10 days to report, an initial report or other communication to the clinician should be issued in the interim, followed by a supplementary or amended report.	
Good practice points	 3.4.1 A final report is produced within 5 working days in 80% of cases. 3.4.2 A final report is produced within 10 working days 90% of cases. 3.4.3 A final report is produced within 15 working days in 98% of cases. 3.4.4 Where there are delays in producing a final report (for example, in the case of an expert opinion being sought), a provisional report or notification is provided within 5 working days. 	

Reference

Royal College of Pathologists of Australasia. 2022. Turnaround Time in Anatomical Pathology.
 URL: https://www.rcpa.edu.au/Library/College-Policies/Guidelines/Turnaround-Time-in-Anatomical-Pathology#page67.

3.5: Sentinel node biopsy reporting

Description	The current MIA or RCPA protocol fields are recommended for processing and reporting SNB.	
Rationale	SNB is a very strong prognostic and staging technique; its use is supported by the literature, including by the AJCC (Amin et al 2017, Wen et al 2021). While there are different protocols used to process SNB (Cheng et al 2023), multiple H&E levels and IHC for melanocytic markers should be completed for each SNB (Cook et al 2019).	
Good practice points	3.5.1 Latest RCPA or CAP guidelines should be followed for processing sentinel lymph nodes.	
	3.5.2 Multiple H&E levels should be examined for each SNB. IHC for melanocytic markers should also be completed. These protocols may vary by lab, but typically a minimum of 3 H&E levels should be completed. IHC can include S100 (or Sox10), melanA and HMB45 (Cook et al 2019).	
	3.5.3 Benign nodal naevi are a potential pitfall when assessing SNB. Careful assessment of morphology and IHC staining patterns can help differentiate these from deposits of metastatic melanoma. Depending on the immunoprofile of the primary melanoma, additional IHC for PRAME or BRAF may be helpful.	
	3.5.4 Reporting of the sentinel node in a synoptic format allows key elements to be easily identified for MDM review. The MIA fields are recommended (see Appendix 4).	
	3.5.5 A synoptic sentinel node report is strongly recommended for routine use to support national consistency and the NZCR database.	

- Amin MB, Greene FL, Edge SB, et al. 2017. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more 'personalized' approach to cancer staging. CA: A Cancer Journal for Clinicians 67(2): 93–9.
- Cheng TW, Hartsough E, Giubellino A. 2023. Sentinel lymph node assessment in melanoma: current state and future directions. *Histopathology*, 83: 669-684.
- Cook MG, Massi D, Szumera-Ciećkiewicz A, et al. 2019. An updated European Organisation for Research and Treatment of Cancer (EORTC) protocol for pathological evaluation of sentinel lymph nodes for melanoma, European Journal of Cancer. 114: 1-7.

3.6: Radiological staging

Description

Radiological staging should be requested dependent on melanoma TNM status, level of risk and intended treatment.

Accurate radiological staging is essential to guide appropriate management decisions. Recent reimbursement for systemic therapies in the perioperative setting has reinforced the importance of accurate staging to clarify local treatments such as surgery or radiation, as well as the duration of systemic treatments for those with more advanced disease.

If patient factors or co-morbidities deem patients unfit for any further treatment, do not perform routine staging.

For ongoing surveillance see Clinical Guideline 6.3

Rationale

The available literature assessing various imaging techniques is limited; most studies are of retrospective design and are difficult to compare due to variability in both methodology and patient groups assessed (Cancer Council Australia Melanoma Guidelines Working Party 2019). These recommendations are made accepting that individual centre's resources and protocols may differ but should be considered as best practice.

Body imaging

PET-CT has improved diagnostic accuracy over CT alone, particularly for the detection of extracerebral distant metastatic disease (Xing et al 2011). A small retrospective study comparing staging PET-CT with CT alone found major therapy changes in 52% of patients based on PET-CT findings, particularly with regard to surgical management (Schüle et al 2016).

Routine radiological staging for asymptomatic patients with stage 0, I and II disease is generally not recommended due to low rates of true-positive findings and comparatively high rates of false-positive findings (Barsky et al 2014; Bikhchandani et al 2014; Orfaniotis et al 2012; Vural Topuz et al 2018; NCCN 2019). A reasonably large percentage of recurrence is local (nodal, satellite or in transit) and is often detected by the patient or clinician (Swetter et al 2018).

For thick melanomas (that is, T4, stage IIB and C disease), there are conflicting views in the literature. There is little evidence to support significant benefit of initial staging with PET-CT or CT due to low yield and high false-positive rates; although there are suggestions that PET-CT may play a role in early identification of distant metastases and consequent upstaging during initial staging workup (Arrangoiz et al 2012; Danielsen et al 2016, Yılmaz et al 2020, Ravichandran et al 2020). Additionally, there may be inherent value in establishing a baseline for future surveillance (Ravichandran et al. 2020). In some high-risk clinical situations, baseline PET-CT may add value with regard to altering the proposed treatment/therapy. The National Institute for Health and Care (NICE) guidelines (July 2022) now suggest considering baseline staging CT imaging for stage IIB disease and offering staging CT imaging for stage IIC disease.

As adjuvant therapy is increasingly being considered for patients with high-risk stage II disease, baseline CT or PET CT would allow for accurate staging prior to discussion or initiation of therapy (Vargas 2024). NCCN Clinical Practice Guidelines for Cutaneous Melanoma (NCCN 2025) recommend baseline imaging prior to discussion or initiation of adjuvant therapy. Adjuvant treatment is not funded for Stage IIB/C in New Zealand at this current time.

Rationale (continued)

Ultrasound of the draining nodal basins can provide a useful adjunct to clinical examination in selected clinical situations, such as high-risk stage II patients with equivocal clinical examination, obesity or failed/declined SNB.

For patients with clinically occult positive sentinel lymph nodes with low nodal tumour volume, there is little evidence to support the value of baseline cross-sectional imaging. In particular, staging imaging in this group has a high false-positive rate, which may lead to inappropriate further investigation and/or interventions (Holtkamp et al 2017). However, the rate of relapse in this group is not negligible, and it may be that the volume of loco-regional or distant metastatic disease is below the threshold for imaging detection at initial diagnosis (Wagner et al 2011, Moncrieff et al 2022). Therefore, follow-up surveillance imaging should be considered at an appropriate time interval based on risk of recurrence.

For patients with clinically detected nodal disease, baseline PET CT is recommended, particularly if the patient is eligible for neoadjuvant therapy. In patients with high-risk stage III disease (stage IIIB, C and D disease), baseline PET-CT detection of occult metastasis may upstage the patient which can have significant implications for further management. In a small retrospective study by Groen et al (2019), 18% of patients with stage III disease were upstaged to stage IV.

Patients with stage IV disease may present clinically or as an unexpected finding on imaging (with or without a history of melanoma). If widespread metastatic disease is identified on CT, PET-CT is unlikely to add value.

Brain imaging

It is widely accepted that MRI is superior to CT for the detection of cerebral metastases and is therefore preferable. Brain MRI also outperforms PET CT (Tutic-Sorrentino 2024).

The AJCC recognises patients with central nervous system metastases as having the worst prognosis of all melanoma patients with distant metastatic disease (M1d category) (Amin et al 2017).

The incidence of developing brain metastases increases with TNM stage. The risk of cerebral metastasis in stages I and II disease is low, and routine staging is generally not recommended. Patients with stage III disease, macroscopic nodal and/or in-transit disease have been associated with increased risk of brain metastases (Samlowski et al 2017). A high mitotic rate has also been associated with increased risk of brain metastases (Haydu et al 2020). In stage IV disease, the risk of concurrent cerebral and extracerebral metastasis at diagnosis is higher and has been reported in up to 20% of patients (Vosoughi et al 2018). There is a small subgroup of patients with metastatic disease involving only the brain.

Good practice points

3.6.1 All staging imaging investigations should be completed within 2 weeks of referral

3.6.2 Stages 0 (MIS), I and IIA

For patients with stage 0 (MIS), I or II (A) disease, excluding SNB (where indicated), baseline cross-sectional imaging is not routinely recommended in asymptomatic patients.

3.6.3 Stages IIB or C

In patients with T4b disease, PET CT is recommended for initial staging. In patients with high-risk stage II disease with thick melanomas (specifically T3b and T4a stage IIB disease), baseline PET CT or CT imaging investigation may be appropriate and should be discussed at a melanoma MDM. Survival prediction tools such as that developed by the **Melanoma Institute of Australia for Stage II** may aid in decision making (Melanoma Institute of Australia, 2024).

3.6.4 Stage IIIA

For patients with stage IIIA under clinical/US observation, initial cross-sectional imaging is not recommended due to low true-positive findings and high false-positive rates. Surveillance imaging is recommended to detect progression (discussed further in **section 6.3**).

If adjuvant therapy or completion lymphadenectomy is planned baseline PET-CT is recommended.

3.6.5 Stage IIIB, C and D

For patients with stage III (B, C and D) disease, baseline imaging with PET-CT and dedicated imaging of the brain is recommended if potential upstaging may influence treatment/therapy. MRI brain is preferred over contrast-enhanced CT.

3.6.6 **Stage IV**

Contrast-enhanced staging CT of the chest, abdomen and pelvis should be performed. Neck CT should be added if the primary is in the head, neck or upper trunk. Dedicated brain imaging is recommended. MRI brain is recommended over contrast-enhanced CT.

Baseline PET-CT for stage IV disease should be guided by the MDM and recommended in certain clinical circumstances, such as if:

- there is oligometastatic metastatic disease demonstrated on conventional CT that would be amenable to surgery or radiotherapy, with or without neoadjuvant treatment
- there are equivocal findings on conventional CT that could potentially change treatment decisions.
- 3.6.7 An US of the lymph node basins draining the primary site may be considered if physical examination is equivocal, limited by body habitus, or SNB has failed or was declined. Although the sensitivity of US is higher than clinical examination, it is no substitute to SNB (this is discussed further in Clinical Guideline 6.4). Negative nodal basin US is not a substitute for biopsy of clinically suspicious lymph nodes.
- 3.6.8 Contrast-enhanced brain MRI is preferred over contrast-enhanced CT due to improved diagnostic accuracy if diagnosing brain metastases early will alter management of the patient.
- 3.6.9 If low-dose CT is performed as part of the PET-CT examination, it is not of diagnostic quality for detection of brain metastases. Additional diagnostic quality brain imaging may therefore be required depending on the type of CT imaging acquired during PET-CT.

- Amin MB, Edge S, Greene F, et al (eds). 2017. AJCC Cancer Staging Manual (8th edition).
 Switzerland: Springer.
- Arrangoiz R, Papavasiliou P, Stransky CA, et al. 2012. Preoperative FDG-PET/CT is an important tool in the management of patients with thick (T4) melanoma. *Dermatology research and practice* 2012: 614,349.
- Barsky M, Cherkassky L, Vezeridis M, et al. 2014. The role of preoperative positron emission tomography/computed tomography (PET/CT) in patients with high-risk melanoma. *J Surg Oncol* 109(7): 726–29.
- Bikhchandani J, Wood J, Richards AT, et al. 2014. No benefit in staging fluorodeoxyglucosepositron emission tomography in clinically node-negative head and neck cutaneous melanoma. Head Neck 36(9): 1,313–16.
- Danielsen M, Kjaer A, Wu M, et al. 2016. Prediction of positron emission tomography/computed tomography (PET/CT) positivity in patients with high-risk primary melanoma. Am J Nucl Med Mol Imaging 6(5): 277–85.
- Groen LC, Lazarenko SV, Schreurs HW, et al. 2019. Evaluation of PET/CT in patients with stage III malignant cutaneous melanoma. *American journal of nuclear medicine and molecular imaging* 9(2): 168–75.
- Haydu LE, Lo SN, McQuade JL, et al. 2020. Cumulative Incidence and Predictors of CNS Metastasis for Patients With American Joint Committee on Cancer 8th Edition Stage III Melanoma. *J Clin Oncol.* 1;38(13):1429-1441. Holtkamp LHJ, Read RL, Emmett L, et al. 2017. Futility of imaging to stage melanoma patients with a positive sentinel lymph node. *Melanoma Research* 27(5): 457–62.
- Melanoma Institute of Australia. 2024. MIA Prediction Tool for Stage II. URL: https://www.melanomarisk.org.au/Stage2Land.
- Moncrieff MD, Lo SN, Scolyer RA, et al. 2022. Clinical Outcomes and Risk Stratification of Early-Stage Melanoma Micrometastases From an International Multicenter Study: Implications for the Management of American Joint Committee on Cancer IIIA Disease. J Clin Oncol. 1;40(34):3940-3951.
- NCCN. 2025. Clinical Practice Guidelines in Oncology. Melanoma: Cutaneous Version 2.2025 —
 January 28, 2025. Pennsylvania: National Comprehensive Cancer Network (NCCN). URL:
 www.nccn.org/professionals/physician_gls/default.aspx.
- National Collaborating Centre for Cancer. 2015. Melanoma: Assessment and management.
 NICE guideline NG14. Cardiff: National Collaborating Centre for Cancer. URL:
 https://www.nice.org.uk/guidance/ng14.
- Orfaniotis G, Mennie JC, Fairbairn N, et al. 2012. Findings of computed tomography in stage IIB and IIC melanoma: A six-year retrospective study in the South-East of Scotland. *Journal of Plastic, Reconstructive & Aesthetic Surgery* 65(9): 1,216–19.
- Ravichandran S, Nath N, Jones DC, et al. 2020. The utility of initial staging PET-CT as a baseline scan for surveillance imaging in stage II and III melanoma. *Surg Oncol*. 35:533-539.
- Samlowski WE, Moon J, Witter M, et al. 2017. High frequency of brain metastases after adjuvant therapy for high-risk melanoma. *Cancer Med* 6(11): 2,576–85.
- Schüle SC, Eigentler TK, Garbe C, et al. 2016. Influence of (18)F-FDG PET/CT on therapy management in patients with stage III/IV malignant melanoma. *Eur J Nucl Med Mol Imaging* 43(3): 482–8.

- Swetter SM, Tsao H, Bichakjian CK, et al. 2019. Guidelines of care for the management of primary cutaneous melanoma. *Journal of the American Academy of Dermatology* 80(1): 208–50.
- Tutic-Sorrentino L, Cazzaniga S, Feldmeyer L, et al. 2024. Positron emission tomographycomputed tomography vs. brain magnetic resonance imaging for the detection of cerebral metastases of melanoma: a 5-year retrospective study. Clin Exp Dermatol. 18;49(10):1179-1185.
- Vargas GM, Farooq MS, Karakousis GC et al. 2024. Adjuvant Therapy for High-Risk Stage II Melanoma: Current Paradigms in Management and Future Directions. Cancers (Basel). 29;16(15):2690.
- Vosoughi E, Lee JM, Miller JR, et al. 2018. Survival and clinical outcomes of patients with melanoma brain metastasis in the era of checkpoint inhibitors and targeted therapies. BMC Cancer 18(1): 490.
- Vural Topuz Ö, Görtan FA, Kaya Döner ZR, et al. 2018. Usefulness of (18)F-FDG PET/CT in cutaneous melanoma patients with negative sentinel lymph nodes and high Clark levels. *Molecular Imaging and Radionuclide Therapy* 27(2): 66–72.
- Wagner T, Meyer N, Zerdoud S, et al. 2011. Fluorodeoxyglucose positron emission tomography fails to detect distant metastases at initial staging of melanoma patients with metastatic involvement of sentinel lymph node. *Br J Dermatol* 164(6): 1,235–40.
- Xing Y, Bronstein Y, Ross MI, et al. 2011. Contemporary diagnostic imaging modalities for the staging and surveillance of melanoma patients: a meta-analysis. *J Natl Cancer Inst* 103(2): 129–42.
- Yılmaz H, Orhan E, Şahin E, et al. 2020. Efficacy of positron emission tomography and computed tomography in clinical staging of cutaneous malignant melanoma. *Dermatologic Therapy* 33(3): e13,304.

CLINICAL GUIDELINE 4: Multidisciplinary care

4.1: Multidisciplinary meetings

Description

Patients with the following should be discussed at a MDM:

- complex reconstruction cases, including MIS
- stages II (B and C) cases if management decisions are not straightforward
- stages III and IV cutaneous melanoma cases
- desmoplastic melanoma
- · melanoma in people under 25 years of age
- non-cutaneous melanoma.

The outcome of the MDM is documented and communicated to the treating clinician, GP and patient. Responsibility for informing the patient of the outcome must be confirmed during the meeting and clearly documented as part of the record.

If the patient is not already linked in with a key contact such as a melanoma CNS or CNC, this should be raised during the meeting, offered to the patient and arranged as appropriate.

Rationale

International evidence shows that multidisciplinary care is a key part of providing best-practice treatment and care for patients with cancer.

Cancer MDMs are part of the philosophy of multidisciplinary care. Effective MDMs result in positive outcomes for patients receiving the care, for health professionals involved in providing the care and for health services overall. Benefits include improved treatment planning, improved equity of patient outcomes, more patients being offered the opportunity to enter relevant clinical trials, improved continuity of care and less service duplication, improved coordination of services, improved communication between care providers and more efficient use of time and resources (Thompson and Williams 2019).

Patients with advanced melanoma can be complex to manage due to several factors, including variation in presentation, the potential involvement of any organ and the unpredictable course of their disease progression. Recent advances and controversies in melanoma management reinforce a need for carefully considered treatment pathways to optimise care.

The collection and presentation of accurate patient information at MDMs and comprehensive feedback to patients are fundamental to high-quality care.

Good practice points

- 4.1.1 Minimum core membership of a melanoma MDM consists of a general surgeon and/or plastic surgeon, a pathologist, a radiation oncologist, a medical oncologist, a radiologist and a CNS and/or a CNC. Ideally other MDT members are encouraged to be involved, including dermatologists, nurse practitioners, GPs, geriatricians, Māori and Pacific liaison, adolescent and young adult key workers and palliative care team members.
- 4.1.2 The melanoma MDM process within each hospital and region is documented, including: appointment of MDM members, referral pathways, meeting frequency and videoconferencing links between regional and provincial hospitals, where appropriate.
- 4.1.3 Details of patients discussed at the MDM and their appropriateness for available clinical trials are recorded on a standardised MDM template.
- 4.1.4 A dedicated CNS, CNC or other health professional is appointed to coordinate written and verbal outcomes (which may include informing the patient), as well as the timely management and tracking of any outgoing referrals.
- 4.1.5 Adequate support staff and resources are available to the MDM. Smaller provincial MDTs or treating clinicians present patients to regional MDMs in person or via teleconferencing.
- 4.1.6 The MDM records and discusses patients with stage Tlb melanoma and above if required.
- 4.1.7 The MDM records information in a database that can be collated and analysed locally, regionally and nationally.
- 4.1.8 Treating clinicians record reasons for not following treatment plans recommended by the MDM.
- 4.1.9 Recommendations from MDM discussions are available as an electronic record and accessible to other members of a patient's health care team, including the patient's GP, within 2 working days.
- 4.1.10 All Māori patients and their family/whānau are offered an opportunity to access Whānau Ora assessments and cultural support services.
- 4.1.11 All patients diagnosed with melanoma are offered referral to a supportive care service such as the Cancer Society or Cancer Psychological and Social Support Service (CPSSS).
- 4.1.12 The MDM process includes a review of patient access barriers (e.g. cost, transport, geographic location, deprivation, health literacy, cultural/language needs) and incorporates CNS/CNC input to mitigate these where possible.

- Ministry of Health. 2012. Guidance for Implementing High-Quality Multidisciplinary Meetings:
 Achieving best practice cancer care. Wellington: Ministry of Health. URL: Guidance for implementing high-quality multidisciplinary meetings (health.govt.nz)
- Te Aho o Te Kahu. 2021. HISO 0038.4:2021 Cancer Multidisciplinary Meeting Data Standard. Wellington: Te Aho o Te Kahu.
- Thompson J, Williams G. 2019. Multidisciplinary care of cancer patients: a passing fad or here to stay? *ANZ Journal of Surgery* 89(5): 464–65.

CLINICAL GUIDELINE 5: Treatment

5.1: Re-excision of histologically confirmed melanomas

Description

Histologically confirmed melanomas are re-excised, with additional clinical margins determined by Breslow thickness.

Patients with a melanoma staging of T1b and greater with a SLN risk score of >5% based on the **Melanoma Institute of Australia sentinel node metastasis risk prediction tool** are referred to an appropriately trained and experienced surgical specialist for consideration of SNB staging at the time of the re-excision (see **Clinical Guideline 5.3**).

A SLN may be indicated in a select group of patients with a T1a melanoma, but the validity of the SLN risk prediction tool normogram in this group is less certain.

Rationale

Wide excision with evidence-based clinical margins aims to provide enduring local control and cure patients without occult lymphatic or haematogenous spread.

Excision margins for invasive melanoma are evidence based, with data from multiple prospective RCTs (Veronesi et al 1988, 1991; Balch et al 1993; Cohn-Cedermark et al 2000; Khayat et al 2003; Utjés et al 2019). There are no randomised control trials to assess safe pathological margins. Decisions as to the need for a further re-excision if the wide local excision has residual melanoma should be based on the initial pathological margins already achieved, melanoma subtype and patient factors. Generally, these studies have excluded head, neck and acral melanoma. Amelanotic melanoma and desmoplastic may need wider excision as the margin can be difficult to see clinically.

Excision margins for invasive melanoma of less than 1 cm are associated with higher local, regional and distant recurrence rates (Haydu et al 2016; MacKenzie et al 2016).

For melanoma 2 mm or less, there is not strong evidence that margins >1 cm improve local recurrence or survival (Veronesi et al 1991). A large multicentre trial is currently underway comparing 1cm vs 2cm margins in T2 to T4 melanomas (Moncrieff et al 2018).

Excision margins > 2 cm for melanoma do not appear to influence survival (Utjés et al 2019; Cohn-Cedermark et al 2000).

In anatomical sites where extending the wider excision from 1cm to 2cm would result in a significant increase in morbidity or disfigurement, electing towards a 1cm margin is appropriate (NICE guidelines 2022). Furthermore, deducting the reported pathological margin achieved at the initial excision biopsy from the planned wide local excision clinical margin is appropriate in anatomical areas where limiting morbidity and/or disfigurement is a priority (NICE guidelines 2022).

Rationale (continued)

Evidence for depth of excision in invasive melanoma is less robust, but expert consensus is that this should include tissue down to but not including deep fascia unless this is clinically involved.

For subungual melanoma, difficulty in obtaining adequate deep margins has led to the recommendation for amputation at the next proximal interphalangeal joint. There is some evidence that more conservative surgery may give equivalent results in MIS of the nail unit (Cochran et al 2014; Duarte et al 2015).

For T1b and thicker melanomas, with a sentinel node risk of >5% on the **Melanoma Institute of Australia sentinel node metastasis risk prediction tool**, SNB is the best staging and prognostic test. It allows potential access to adjuvant immune or targeted therapy and may confer a survival advantage in some patients.

The appropriate use criteria published by the American College of Mohs Surgeons in 2012 included lentigo maligna melanoma and melanoma in situ as an indication for the use of Mohs micrographic surgery (MMS) in mask and head and neck areas, it was deemed "uncertain" on the torso and extremities (Ad Hoc Task Force 2012). This technique was first described by Zitelli's group in 1997 (Zitelli 1997).

Staged excision is an alternative when MMS is not an option for the management of melanoma. It involves serial step radial sectioning through the specimen with rapid paraffin-fixed slide processing and pathologist review.

Accurate mapping of the melanocytic lesion by the pathologist in conjunction with the surgeon allows for precise margin analysis with subsequent targeted serial surgical excision of areas not clear of melanoma.

In a population of head and neck melanoma and melanoma in situ, Moyer et al reported in 2016 that 74% of the lentigo maligna subtype had a mean margin from lesion to clearance for melanoma in situ of 9.3mm and 13.7mm for invasive melanoma. Only 41% of melanoma in situ lesions and 3% with an invasive component were cleared with 5mm margins. 74.5% of melanoma in situ were clear with 10mm margins and 52% for invasive melanoma. They reported a 5-year recurrence rate of 1.4% increasing to only 2.2% at 10 years (Moyer et al 2016).

Good practice points

- 5.1.1 All doctors who undertake re-excision of melanoma are appropriately trained and experienced.
- 5.1.2 Margins may be modified by clinical site or patient co-morbidities.
- 5.1.3 Re-excision of melanoma in situ to 5–10 mm clinical margins and AJCC
 T1a cases of melanoma to 10 mm clinical margins can be performed as a local anaesthetic procedure by either an appropriately trained and experienced primary health care doctor or a melanoma specialist.
- 5.1.4 Lesions meeting histological staging AJCC T1b or higher, and a sentinel node risk score of >5% are referred to an appropriately trained and experienced surgical specialist for consideration of SNB staging at the time of the re-excision.
- 5.1.5 Excisions have vertical edges and extend to, but do not include, the deep fascia, as clinically appropriate.
- 5.1.6 Precise measurement of clinical margins is mapped out from the edge of the scar or remaining lesion with a ruler before the definitive excision.
- 5.1.7. Deducting the reported pathological margin achieved at the initial excision biopsy from the planned wide local excision clinical margin is appropriate in anatomical areas where limiting morbidity and/or disfigurement is a priority.

Good practice points (continued)

- 5.1.8 For in situ or invasive melanoma of lentigo maligna sub-type, management could be considered with margin-controlled surgery such as Mohs or staged excision with rushed paraffins. Staged excision can be performed by any surgeon or dermatologist, in concert with the local histopathologist increasing its utility at a population level.
- 5.1.9 Patients are provided with information about surgical excision risks: wound infection, haematoma, failure of skin graft and flap, numbness, scarring, seroma and lymphoedema and the possibility that further surgery will be required.
- 5.1.10 Patients undergoing surgery are offered the choice for their tissue to be disposed of by standard methods or utilising appropriate tikanga processes.
- 5.1.11 Patients are informed about melanoma in general and increased risks for new melanoma and advised to undergo regular full-body skin checks.
- 5.1.12 Appropriate data collection systems are in place to collate, publish and audit data on post-surgery complications.
- 5.1.13 Clinicians adhere to the guidelines listed in the following table:

Breslow thickness	Additional clinical margin
Naevus with severe cytological or architectural atypia	5 mm
Melanoma in situ (Tis)	5–10 mm
<1.0 mm (T1)	10 mm
1–2 mm (T2)	10–20 mm
2–4 mm (T3)	20 mm
>4 mm (T4)	20 mm

- Ad Hoc Task Force. 2012. AAD/ACMS/ASDSA/ASMS 2012 appropriate use criteria for Mohs micrographic surgery: a report of the American Academy of Dermatology, American College of Mohs Surgery, American Society for Dermatologic Surgery Association, and the American Society for Mohs Surgery. J Am Acad Dermatol 67(4):531-550. Erratum in: J Am Acad Dermatol. 2015 72(4):748.
- Balch CM, Urist MM, Karakousis CP, et al. 1993. Efficacy of 2-cm surgical margins for intermediate-thickness melanomas (1 to 4 mm). Results of a multi-institutional randomized surgical trial. *Annals of surgery* 218(3): 262–9.
- Cochran AM, Buchanan PJ, Bueno RA Jr, et al. 2014. Subungual melanoma: a review of current treatment. *Plastic and Reconstructive Surgery* 134(2): 259–73.
- Cohn-Cedermark G, Rutqvist LE, Andersson R, et al. 2000. Long term results of a randomized study by the Swedish Melanoma Study Group on 2-cm versus 5-cm resection margins for patients with cutaneous melanoma with a tumor thickness of 0.8–2.0 mm. *Cancer* 89(7): 1,495– 501.
- Duarte AF, Correia O, Barros AM, et al. 2015. Nail melanoma in situ: clinical, dermoscopic, pathologic clues, and steps for minimally invasive treatment. *Dermatol Surg* 41(1): 59–68.
- Haydu LE, Stollman JT, Scolyer RA, et al. 2016. Minimum safe pathologic excision margins for primary cutaneous melanomas (1–2 mm in thickness): analysis of 2,131 patients treated at a single center. Ann Surg Oncol 23(4): 1,071–81.

- Khayat D, Rixe O, Martin G, et al. 2003. Surgical margins in cutaneous melanoma (2 cm versus 5 cm for lesions measuring less than 2.1-mm thick). *Cancer* 97(8): 1,941–6.
- MacKenzie Ross AD, Haydu LE, Quinn MJ, et al. 2016. The association between excision margins
 and local recurrence in 11,290 thin (T1) primary cutaneous melanomas: a case-control study.

 Ann Surg Oncol 23(4): 1,082–89.
- Moncrieff, M.D., Gyorki, D., Saw, R. et al. 2018. 1 Versus 2-cm Excision Margins for pT2-pT4
 Primary Cutaneous Melanoma (MelMarT): A Feasibility Study. Ann Surg Oncol. 25: 2541–2549.
- Moyer JS, Rudy S, Boonstra PS et al. 2017. Efficacy of Staged Excision With Permanent Section Margin Control for Cutaneous Head and Neck Melanoma. JAMA Dermatol. 153(3):282-288.
- National Institute for Health and Care Excellence. 2015, updated 2022. *Melanoma: Assessment and management. NICE guideline NG14.* Cardiff: National Collaborating Centre for Cancer. URL: https://www.nice.org.uk/guidance/ng14.
- Tzellos T, Kyrgidis A, Mocellin S, et al. 2014. Interventions for melanoma in situ, including lentigo maligna. *Cochrane Database Syst Rev* (12): CD010308.
- Utjés D, Malmstedt J, Teras J, et al. 2019. 2-cm versus 4-cm surgical excision margins for primary cutaneous melanoma thicker than 2 mm: long-term follow-up of a multicentre, randomised trial. *The Lancet* 394(10197): 471–77.
- Veronesi U, Cascinelli N. 1991. Narrow excision (1-cm margin). A safe procedure for thin cutaneous melanoma. *Arch Surg* 126(4): 438–41.
- Veronesi U, Cascinelli N, Adamus J, et al. 1988. Thin stage I primary cutaneous malignant melanoma. Comparison of excision with margins of 1 or 3 cm. N Engl J Med 318(18): 1,159–62.
- Zitelli JA, Brown C, Hanusa BH. Mohs micrographic surgery for the treatment of primary cutaneous melanoma. *J Am Acad Dermatol*. 1997 37(2 Pt 1):236-45.

5.2: Desmoplastic/neurotropic melanoma

Description	The MDM discusses the potential role of radiation treatment to improve local control in patients with desmoplastic/neurotropic melanoma.	
Rationale	Desmoplastic melanoma account for 1–4% of all primary cutaneous melano and exhibit different biological behaviour to non-desmoplastic melanoma. have lower rates of sentinel node and distant metastasis (Dunne et al 2017; Hughes et al 2021). However, they also have an increased risk of local recurs (6–15%) (Chen et al 2008; Guadagnolo et al 2014; Strom et al 2014). The risk of spread to the sentinel node is very low in pure (>90% desmoplastic desmoplastic melanomas (Dunne et al 2017). However, in mixed-type desmoplastic melanomas the risk of sentinel node involvement is often >10 (Hodson et al 2022). As a result, accurate reporting on the degree of desmoplasia is important to plan management.	
	Desmoplastic melanoma most commonly occur in males, older patients, and on the head and neck and there is an increased risk (30–60%) of neurotropism (Quinn et al 1998; Hughes et al 2021).	
	Currently, there have been no RCTs examining the excision margins required to minimise local recurrence in desmoplastic melanoma; however, studies have confirmed that local recurrence is strongly related to involved resection margins (Chen et al 2008; Guadagnolo et al 2014; Strom et al 2014; Hughes et al 2021).	
	There are no published RCTs investigating the role of adjuvant radiotherapy in desmoplastic melanoma. Observational studies have reported a local recurrence benefit from adjuvant radiotherapy in desmoplastic melanoma with neurotropism and inadequate histological margins (Chen et al 2008; Guadagnolo et al 2014; Strom et al 2014; Varey et al 2017; Hughes et al 2021).	
Good practice points	5.2.1 Radiation treatment is considered for patients with desmoplastic melanoma where the melanoma is unresectable or where the clinical margins are <8 mm (Varey et al 2017).	
	5.2.2 Radiation should be considered for head and neck primary sites and in other sites where the melanoma has marked neurotropism or is >4 mm thick (Chen et al 2008; Guadagnolo et al 2014; Strom et al 2014).	
	5.2.3 SNB should still be considered in patients with mixed-type desmoplastic melanoma based on their clinical and histopathological risk factors and discussion at a melanoma MDM.	

- Chen JY, Hruby G, Hong A, et al. 2008. Desmoplastic neurotropic melanoma: A clinicopathologic analysis of 128 cases. *Cancer* 113(10): 2,770–78.
- Dunne J, Wormald J, Steele J, et al. 2017. Is sentinel lymph node biopsy warranted for desmoplastic melanoma? A systematic review. *Journal of Plastic, Reconstructive & Aesthetic Surgery* 70(2): 274–80.
- Guadagnolo BA, Zagars GK, Prieto V, et al. 2014. The role of adjuvant radiotherapy in the local management of desmoplastic melanoma. *Cancer* 120(9): 1,361–68.
- Hodson M, Feustel P, Davis L 2022. Sentinel lymph node biopsy in desmoplastic melanoma the
 percent desmoplastic component matters: A systematic review. J Plast Reconstr Aesthet Surg;
 75(12): 4441-4449
- Hughes T, Williams G, Gyorki D, et al. 2021. Desmoplastic melanoma: a review of its pathology and clinical behaviour, and of management recommendations in published guidelines. *Journal of the European Academy of Dermatology and Venereology*. DOI: 10.1111/jdv.17154.
- Quinn MJ, Crotty KA, Thompson JF, et al. 1998. Desmoplastic and desmoplastic neurotropic melanoma: experience with 280 patients. Cancer 83(6):1,128–35.
- Strom T, Caudell JJ, Trotti AM, et al. 2014. Radiotherapy influences local control in patients with desmoplastic melanoma. *Cancer* 120(9): 1,369–78.
- Varey AHR, Goumas C, Hong AM, et al. 2017. Neurotropic melanoma: An analysis of the clinicopathological features, management strategies and survival outcomes for 671 patients treated at a tertiary referral center. *Modern Pathology* 30(11): 1,538–50.

5.3: Sentinel node biopsy technique

Description

SNB staging is considered for all patients, who could benefit from the procedure with melanoma T1b or thicker and a sentinel node risk of >5% on the **Melanoma Institute of Australia sentinel node metastasis risk prediction tool**. This tool should be used to guide selection for sentinel node biopsy. If risk is <5%, SNB is not recommended. When risk is between 5 and 10%, SNB should be considered. At a risk of >10% SNB is recommended if the patient is clinically appropriate.

SNB in melanoma is carried out using triple localisation with preoperative lymphoscintigraphy and SPECT scan. Intra-operative localisation is performed with blue dye and a gamma probe.

Rationale

Studies have shown that the SNB technique is useful for identifying small lymph node metastases in patients with T1b and above melanoma. SNB allows for accurate staging, prognostic information, improved regional control and potential access to adjuvant treatment (Madu et al 2017; Wong et al 2018; Eggermont et al 2015, Long et al 2024; Eggermont et al 2021; Dummer et al 2012; Wen et al 2021).

Thin melanomas (<1mm) are the most common form of melanoma and can usually be cured through surgical removal of the primary tumour. The expected rate of node positivity in thin melanoma is 5.2%, increasing to 8% in those >0.8 mm, where the benefit of SNB starts to outweigh the false-negative rate and risk (Han et al 2013; Wong et al 2018; Gershenwald and Scolyer 2018). The AJCC staging system has identified an improved prognosis for patients with thin melanoma >0.8 mm who had a SNB when negative compared with those who did not undergo SNB (Gershenwald et al 2017).

Thick melanomas (>4 mm) are more likely to undergo haematogenous metastasis. There are few studies focusing on the use of SNB in patients with thick melanomas. However, recent evidence of relapse-free survival (RFS) benefit with adjuvant treatments, together with the move towards public funding of adjuvant immunotherapy and targeted therapies for stage IIIB melanoma and above, suggests that full staging with SNB can support informed discussions about adjuvant treatment for patients with thick primary melanomas (Eggermont et al 2015, 2018; Long et al 2017; Weber et al 2017; Seth et al 2020).

Amongst those with a primary T4b melanoma the risk of an involved sentinel node frequently exceeds 20%. PET CT imaging to identify those who have subclinical, but radiologically evident nodal disease prior to undergoing sentinel node biopsy is important to allow the patient access to neoadjuvant immunotherapy if disease is upstaged.

There is no survival benefit proven for completion lymphadenectomy for clinically occult nodal disease, although the largest trial (MSLT II) had a mean SNB deposit of only 1.11 mm in the observation group (interquartile range 0.23–1.38 mm) (Faries et al 2017; Leiter et al 2016, 2019).

In New Zealand, where lymphoscintigraphy is usually not associated with preoperative USS (as is the case in many international melanoma centres) a sentinel node biopsy may pick up a node with a large deposit of tumour. MDM discussion should decide what size deposit is deemed large enough to have been picked up on preoperative imaging, if it had been performed. 5mm has shown to be detectable by USS by more than one centre (Starritt et al 2005; Sibon et al 2007; Pilko 2012)

Good practice points

- 5.3.1 SNB staging is considered for all patients, who could benefit from the procedure, with melanoma T1b or thicker, and a sentinel node risk of >5% on the **Melanoma Institute of Australia sentinel node metastasis risk prediction tool**.. This risk prediction tool should be used to guide selection for sentinel node biopsy. If <5%, SNB is not recommended. When 5-10% risk, SNB should be considered. At a risk of >10% SNB is recommended.
- 5.3.2. Clinically suitable patients with a T4b primary melanoma should undergo PET CT staging prior to undergoing sentinel node biopsy to identify those with radiologically evident nodal disease that are suitable for neoadjuvant immunotherapy. If the PET CT is negative for metastatic disease SNB would then be used for even more accurate staging to facilitate access to adjuvant treatments.
- 5.3.3 Clinicians inform patients of the role of SNB, the technique itself, its limitations, potential complications and alternative management options if it is declined. This discussion is facilitated by both the primary clinician and the surgeon who performs SNB.
- 5.3.4 Pre-operative lymphoscintigraphy and SPECT is carried out to identify which draining lymph node fields contain the sentinel node(s).
 Technetium-99 nanocolloid is injected intradermally either side of the middle of the scar. Dynamic and static lymphoscintigrams are obtained.
- 5.3.5 Lymphoscintigrams are reported by radiologists and nuclear medicine specialists trained and experienced in the technique.
- 5.3.6 SNB is performed by surgeons trained and experienced in the technique.
- 5.3.7 Ex vivo assessment of the removed sentinel node should be performed to take a radioactive 'count' of the node. If the wound bed has a count > 10% of the sentinel node count, further exploration should be performed to identify other sentinel node(s).
- 5.3.8 SNB is performed within 18 hours of lymphoscintigraphy.
- 5.3.9 Incisions are marked out with consideration of completion lymphadenectomy access, should this be required.
- 5.3.10 All patients with a positive SNB receive MDM discussion regarding the choice of observation versus adjuvant immunotherapy versus completion lymphadenectomy.
- 5.3.11 Where SNB is not performed in patients with T1b (or over) melanoma, active clinical and radiological surveillance is offered unless comorbidities preclude (US 4–6 monthly for 2 years, CT if on the torso and multiple nodal beds require surveillance).
- 5.3.12 Appropriate data collection systems are in place to collate, report and audit post-surgery complications.

- Dummer R, Hauschild A, Guggenheim M, et al. 2012. Cutaneous melanoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. *Annals of Oncology* 23(S7): vii86–vii91.
- Long GV, Hauschild A, Santinami M, et al. 2024. Final Results for Adjuvant Dabrafenib plus Trametinib in Stage III Melanoma. *N Engl J Med*. Nov 7;391(18):1709-1720. (COMBI-AD)
- Eggermont AM, Chiarion-Sileni V, Grob JJ, et al. 2015. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. *Lancet Oncol* 16(5): 522–30.

- Eggermont AMM, Blank CU, Mandalà M, et al. 2021. EORTC Melanoma Group. Adjuvant pembrolizumab versus placebo in resected stage III melanoma (EORTC 1325-MG/KEYNOTE-054): distant metastasis-free survival results from a double-blind, randomised, controlled, phase 3 trial. *Lancet Oncol.* May;22(5):643-654.
- Faries MB, Thompson JF, Cochran AJ, et al. 2017. Completion dissection or observation for sentinel-node metastasis in melanoma. New England Journal of Medicine 376(23): 2,211–22.
- Gershenwald, JE, Scolyer, RA. 2018. Melanoma staging: American Joint Committee on Cancer (AJCC) 8th edition and beyond. *Ann Surg Oncol* 25(8): 2,105–10.
- Gershenwald J, Scolyer R, Hess K, et al. 2017. Melanoma staging: evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA: A Cancer Journal for Clinicians 67(6): 472–92.
- Han D, Zager JS, Shyr Y, et al. 2013. Clinicopathologic predictors of sentinel lymph node metastasis in thin melanoma. J Clin Oncol 31(35): 4,387–93.
- Leiter U, Stadler R, Mauch C, et al. 2016. Complete lymph node dissection versus no dissection in patients with sentinel lymph node biopsy positive melanoma (DeCOG-SLT): a multicentre, randomised, phase 3 trial. *The Lancet Oncology* 17(6): 757–67.
- Leiter U, Stadler R, Mauch C, et al. 2019. Final analysis of DeCOG-SLT trial: no survival benefit for complete lymph node dissection in patients with melanoma with positive sentinel node. *J Clin Oncol* 37(32): 3000–8.
- Long GV, Hauschild A, Santinami M, et al. 2017. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. *N Engl J Med* 377: 1,813–23.
- Madu MF, Wouters MWJM, van Akkooi ACJ. 2017. Sentinel node biopsy in melanoma: current controversies addressed. *European Journal of Surgical Oncology (EJSO)* 43(3): 517–33.
- Melanoma Institute of Australia. 2021. MIA Prediction Tool for Sentinel Node Metastasis Risk.
 URL: http://www.melanomarisk.org.au/SNLLand
- Morton D, Thompson J, Cochran A, et al. 2014. Final trial report of sentinel-node biopsy versus nodal observation in melanoma. *New England Journal of Medicine* 370(7): 599–609.
- NCCN. 2022. Clinical Practice Guidelines in Oncology (NCCN Guidelines). Pennsylvania: National Comprehensive Cancer Network (NCCN). URL: www.nccn.org/professionals/physician_gls/default.aspx
- Pilko G, Zgajnar J, Music M, Hocevar M. 2012. Lower tumour burden and better overall survival in melanoma patients with regional lymph node metastases and negative preoperative ultrasound. Radiol Oncol. Mar;46(1):60-8.
- Seth R, Messersmith H, Kaur V, et al. 2020. Systemic therapy for melanoma: ASCO guideline. J Clin Oncol 38(33): 3,947–70. DOI: 10.1200/JCO.20.00198. Epub 2020 Mar 31. PMID: 32228358.
- Sibon C, Chagnon S, Tchakerian A, et al. 2007. The contribution of high-resolution ultrasonography in preoperatively detecting sentinel-node metastases in melanoma patients. Melanoma Res. 17:233–7.
- Starritt EC, Uren RF, Scolyer RA, et al. 2005. Ultrasound Examination of Sentinel Nodes in the Initial Assessment of Patients With Primary Cutaneous Melanoma. *Ann Surg Oncol.* 12; 18–23.
- Weber J, Mandala M, Del Vecchio M, et al. 2017. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. *New England Journal of Medicine* 377(19): 1,824–35.
- Wen D & Martin RCW. 2021. Proposed quality performance indicators of sentinel lymph node biopsy for cutaneous melanoma. *ANZ J Surg*. Dec;91(12):2644-2649.

 Wong SL, Faries MB, Kennedy EB, et al. 2018. Sentinel lymph node biopsy and management of regional lymph nodes in melanoma: American Society of Clinical Oncology and Society of Surgical Oncology Clinical Practice Guideline Update. Annals of Surgical Oncology 25(2): 356–77.

5.4: Therapeutic/Completion lymphadenectomy

Description

An oncological therapeutic lymphadenectomy is offered to all patients with clinically or radiologically evident nodal disease after appropriate staging and discussion at a melanoma MDM. In suitable patients this should be preceded by neoadjuvant immunotherapy.

Rationale

Management of the nodal bed in patients with high-risk melanoma has moved from elective node clearance in all to therapeutic clearance in those with clinical or radiological detectable disease and sentinel node biopsy in those without. Therapeutic nodal dissection for clinically involved nodes is associated with 5-year survival of 30-50% and thus is accepted and recommended.

In New Zealand, therapeutic dissection for clinical or radiological positive disease has previously meant no access to public funded immunotherapy until metastatic disease is found. On the 1 June 2025 both neoadjuvant and adjuvant immunotherapy became publicly funded. Adjuvant treatment has been shown to have a significant benefit on relapse free survival with neoadjuvant treatment providing even further benefit. See **Clinical Guidelines 5.5 and 5.6**.

Sentinel node biopsy has been used to distinguish stage III patients at an earlier point in their disease process, providing excellent prognostic information and allowing the latest staging (see **Appendix 1 AJCC Melanoma of the skin staging 8th edition**) to stratify patients much more effectively as seen by the improved survival in those classified in the earlier stages.

There is a continued move towards less nodal surgery, with a further shift from nodal clearance in all patients with a positive sentinel node to a surveillance approach after two large trials (MSLT II and DeCOG-SLT) showed no difference in overall survival. However, these two trials either excluded or had few patients with high-risk sentinel node disease i.e. disease volume >2mm, extranodal spread, more than 3 positive nodes or patients with micro satellitosis. Recent New Zealand retrospective studies (Williams et al 2022, 2023) have shown a higher mean volume of sentinel node disease (2.55mm) as well as an increased rate of positive non sentinel nodes on completion dissection (22.2% v 11.5%). However, Broman et al (2021) have shown in a small number of matched high-risk patients who were observed versus had a complete lymph node dissection (n= 51), that although there were higher number of SLN-basin recurrences, this was not significant and most recurrences were outside the SLN basin. There were no significant differences in distant metastasis, distant metastasis free survival or death due to melanoma.

Patients with positive sentinel nodes should be discussed at an MDM and the patient made aware of the pros and cons of completion lymph node dissection for local control versus surveillance. Radiological surveillance is a key part of the observation and needs to be available if this is the preferred pathway.

The previously used terms of micro and macroscopic disease in lymph nodes have been variable in meaning. High volume melanoma centres contributing to the literature likely have much easier access to high quality USS in clinic or at the time of their lymphoscintigraphy, thus converting patients to 'macroscopic' nodal disease leading to a nodal clearance rather than sentinel node biopsy. The 8th edition of the AJCC melanoma staging replaces these terms with the more appropriate 'clinically occult' and 'clinically evident' i.e. found on clinical examination or imaging. What histological size of a deposit in a positive sentinel node relates to this is still unclear. We have suggested 5mm or greater nodal disease would potentially be radiologically detected pre-op (Starrit et al 2005; Sibon et al 2007; Pilko 2012) and thus upstage the patient to stage IIIB or above.

Rationale (continued)

In this situation the patient would be eligible for adjuvant immunotherapy. If immunotherapy was not an option, then a discussion regarding lymph node clearance and observation with serial US should be had in this group.

In keeping with the move towards less nodal surgery, less iliac nodal dissection is being performed although there is a paucity of published prospective evidence comparing survival or morbidity of inguinal versus ilioinguinal node dissection. In the MSLT II trial, there was no difference in lymphoedema rates between the two procedures. Iliac nodes are positive in 30–39% after an ilioinguinal node dissection for macroscopic disease, decreasing to 9.3% after a positive sentinel node only. PET-CT before groin dissection may highlight positive iliac / obturator node disease but is not sensitive to small volume disease. Lymphoscintigraphy prior to the SNB may also give information on where the secondary tier nodes lie. (Verver et al 2018; Faries et al 2017; Spillane et al 2011; Kretschmer et al 2001; Kissin 1987; Allan et al 2008; Glover et al 2014; Jonk et al 1988).

There is RCT evidence that radiation after a lymph node dissection for patients considered to be at intermediate to high risk of recurrence in the nodal region decreases the risk of recurrence but does not improve overall survival (Henderson et al 2015). For patients who have received neoadjuvant immunotherapy, adjuvant radiotherapy may be considered for patients with poor pathological response (<50% pathological response) and meeting criteria for adjuvant radiotherapy (see **Clinical Guidelines 5.5.14 and 5.6.7**)

Surveillance of patients with resected positive sentinel node disease may be better focussed on distant spread, with cross sectional imaging. These patients are also at risk of nodal disease which may potentially be found at a smaller size on US (Starritt et al 2005; Sibon et al 2007; Pilko 2012). US is more user dependent, time consuming, and in New Zealand, is a limited resource.

Good practice points

- 5.4.1 Patients with sentinel node disease of <5 mm and a primary melanoma T2a or thinner are recommended for observation with node field US every 6 months for the first 3 years by an experienced sonographer. A primary melanoma of T2b and above with any size sentinel node deposit would be staged as IIIB and should have a discussion at MDM regarding adjuvant treatment. See Clinical Guideline 5.6, Clinical Guideline 6.3 and Appendix 6.
- 5.4.2 If positive sentinel nodes have high-risk features such as extranodal spread, multiple positive nodes or in patients with immunosuppression or autoimmune disease (i.e. with contraindications to adjuvant therapy), completion lymphadenectomy for local control should be discussed at MDM.
- 5.4.3 Patients with positive sentinel nodes who do not wish to or cannot be appropriately followed up with US, or in whom the balance between local control versus the morbidity of surgery favours local control completion lymphadenectomy should be discussed at MDM.
- 5.4.4 Therapeutic node dissection in conjunction with neoadjuvant +/- adjuvant immunotherapy is offered to patients with clinically or radiologically evident nodal metastases.
- 5.4.5 All patients who are being considered for a completion lymphadenectomy receive a whole-body PET-CT beforehand.
- 5.4.6 Lymphadenectomy is performed by trained and experienced surgeons.
- 5.4.7 Operation notes fully describe the anatomical boundaries of the lymphadenectomy and lymph node levels removed.

Good practice points (continued)

- 5.4.8 Therapeutic neck lymphadenectomies are tailored to individual patients' metastatic disease and the site of the primary melanoma and may include radical, modified radical or selective neck lymphadenectomy with or without a parotidectomy.
- 5.4.9 A therapeutic axillary lymphadenectomy includes levels I–III.
- 5.4.10 A therapeutic inguinal lymphadenectomy involves skeletonisation of the femoral vessels and removal of pudendal nodes, nodes anterior to the external oblique and Cloquet's nodes in the femoral canal.5.4.9 An ilioinguinal node dissection is performed for PET-CT positive or for biopsy proven melanoma metastases in inguinal and pelvic nodes in the absence of distant disease. Ilioinguinal node dissection to be performed if the second-tier node of a positive SNB (not deemed appropriate for observation) is in the iliac chain on lymphoscintigraphy.
- 5.4.11 A therapeutic iliac and obturator lymphadenectomy involves skeletonisation of the iliac vessels and obturator nerve from at least the common iliac artery bifurcation to the inguinal ligament.
- 5.4.12 For high-risk nodal disease adjuvant radiation treatment should be considered. **See Clinical Guideline 5.6.**
- 5.4.13 Patients must have access to a lymphoedema therapist to prescribe and fit compression garments and provide education about pre- and post-operative lymphoedema management.
- 5.4.14 Appropriate data collection systems are in place to collate, report and audit data on post-surgery complications.

- Allan CP, Hayes AJ, Thomas JM. 2008. Ilioinguinal lymph node dissection for palpable metastatic melanoma to the groin. ANZ J Surg 78(11): 982–6.
- Amin MB, Greene FL, Edge SB, et al. 2017. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more 'personalized' approach to cancer staging. CA: A Cancer Journal for Clinicians 67(2): 93–9.
- Broman K, Hughes T, Dossett L, et al, 2021. Surveillance of Sentinel Node-Positive Melanoma
 Patients with Reasons for Exclusion from MSLT-II: Multi-Institutional Propensity Score Matched
 Analysis. Journal of the American College of Surgeons 232(4):424-431.
- Faries MB, Thompson JF, Cochran AJ, et al. 2017. Completion dissection or observation for sentinel-node metastasis in melanoma. N Engl J Med 376(23): 2,211–22.
- Glover AR, Allan CP, Wilkinson MJ, et al. 2014. Outcomes of routine ilioinguinal lymph node dissection for palpable inguinal melanoma nodal metastasis. *Br J Surg* 101(7): 811–19.
- Henderson MA, Burmeister BH, Ainslie J, et al. 2015. Adjuvant lymph-node field radiotherapy versus observation only in patients with melanoma at high risk of further lymph-node field relapse after lymphadenectomy (ANZMTG 01.02/TROG 02.01): 6-year follow-up of a phase 3, randomised controlled trial. *Lancet Oncol* 16(9): 1,049–60.
- Jonk A, Kroon BB, Rümke P, et al. 1988. Results of radical dissection of the groin in patients with stage II melanoma and histologically proved metastases of the iliac or obturator lymph nodes, or both. Surg Gynecol Obstet 167(1): 28–32.
- Kissin MW, Simpson DA, Easton D, et al. 1987. Prognostic factors related to survival and groin recurrence following therapeutic lymph node dissection for lower limb malignant melanoma. Br J Surg 74(11): 1,023–26.

- Kretschmer L, Neumann C, Preusser KP, et al. 2001. Superficial inguinal and radical ilioinguinal lymph node dissection in patients with palpable melanoma metastases to the groin an analysis of survival and local recurrence. *Acta Oncol* 40(1): 72–78.
- Leiter U, Stadler R, Mauch C et al. 2019. Final Analysis of DeCOG-SLT Trial: No Survival Benefit for Complete Lymph Node Dissection in Patients with Melanoma With Positive Sentinel Node. *Journal of Clinical Oncology: official journal of the American Society of Clinical Oncology*, 37(32): 3000–3008.
- Morton DL, Thompson JF, Cochran AJ, et al. 2014. Final trial report of sentinel-node biopsy versus nodal observation in melanoma. New England Journal of Medicine 370(7): 599–609.
- Pilko G, Zgajnar J, Music M, Hocevar M. 2012. Lower tumour burden and better overall survival in melanoma patients with regional lymph node metastases and negative preoperative ultrasound. *Radiol Oncol.* Mar;46(1):60-8.
- Sibon C, Chagnon S, Tchakerian A, et al. 2007. The contribution of high-resolution ultrasonography in preoperatively detecting sentinel-node metastases in melanoma patients. *Melanoma Res.* 17:233–7.
- Spillane AJ, Haydu L, McMillan W, et al. 2011. Quality assurance parameters and predictors of outcome for ilioinguinal and inguinal dissection in a contemporary melanoma patient population. *Ann Surg Oncol* 18(9): 2,521–28.
- Starritt EC, Uren RF, Scolyer RA, et al. 2005. Ultrasound Examination of Sentinel Nodes in the Initial Assessment of Patients With Primary Cutaneous Melanoma. Ann Surg Oncol 12, 18–23.
- Verver D, Madu MF, Oude Ophuis CMC, et al. 2018. Optimal extent of completion lymphadenectomy for patients with melanoma and a positive sentinel node in the groin. Br J Surg 105(1): 96–105.
- Williams TS, Arahill-Whitham J, Bailey TA, et al. 2023. New Zealand patients have a higher melanoma burden in sentinel nodes and completion lymphadenectomy than patients in MSLT-II. Journal of Plastic, Reconstructive and Aesthetic Surgery 83: 98 – 105.
- Williams TS, Tallon B, Adams BM. 2021. Melanoma sentinel lymph node biopsy and completion lymph node dissection: A regional hospital experience. *Journal of Plastic, Reconstructive and Aesthetic Surgery* 75(2): 730 - 736.

5.5: Neoadjuvant systemic therapy in locoregionally advanced melanoma

Description

The addition of effective systemic therapies to surgical management of patients with locoregionally advanced and resectable oligometastatic melanoma has significantly improved outcomes. Adjuvant therapy with either immune checkpoint inhibitors (ICIs) or targeted therapy with BRAF/MEK inhibitors after surgical resection of stage III/IV melanoma has been shown to improve recurrence-free survival and represents a standard of care. Subsequent phase II/III randomized trials have demonstrated neoadjuvant ICI as a superior treatment for patients with clinically detectable stage III or resectable stage IV melanoma compared with adjuvant therapy. High rates of pathological complete response (pCR) and major pathological response (MPR) are observed in patients treated with neoadjuvant ICIs, correlating with excellent survival outcomes.

Rationale

Stage IIIB-IV melanoma has typically been associated with poor clinical outcomes. Previous standard of care involved surgical resection, with five-year recurrence-free and overall survival estimates of 30-39% and 40-59% respectively (Garb et al 2025).

Adjuvant therapy for 12 months after complete surgical resection of stage III/IV melanoma is considered standard of care on the basis of randomized phase III data demonstrating improvements in recurrence-free survival. Both single agent anti-PD1 therapy and BRAF/MEK inhibitor targeted therapy (in BRAF V600 mutant melanoma) have an established role in this setting (Eggermont et al 2021; Long et al 2024; Wolchok et al 2022).

More recently, the use of neoadjuvant ICI represents a significant advance in the management of locoregionally advanced melanoma. Two key trials have demonstrated superiority of neoadjuvant over adjuvant administration of ICI in clinically detectable stage III melanoma (Patel et al 2023, Blank et al 2024). The phase II SWOG S1801 trial established neoadjuvant administration of pembrolizumab as superior to adjuvant administration in stage IIIB to resectable stage IV melanoma, with significant improvement in event-free survival (72% vs 49%, p=0.004). The phase III NADINA trial randomized patients to receive either neoadjuvant combination ipilimumab and nivolumab followed by surgery, or surgery followed by adjuvant nivolumab. Patients in the neoadjuvant arm that had a MPR (≤10% viable tumour cells) did not go on to receive adjuvant immunotherapy. In total 59% of patients demonstrated a MPR with those in this group having a 95% recurrence-free survival at 12 months (Blank et al 2024).

Since June 2025, Pharmac have approved funding for perioperative pembrolizumab for resectable stage IIIB-IV melanoma. Adjuvant treatment for stage IIIB/IV is also available with adjuvant pembrolizumab or the option of BRAF/MEK inhibitor (Dabrafenib and Trametinib) for those with BRAFV600 mutated melanoma. With this transition, all patients with clinically detectable, resectable stage IIIB-IV melanoma should be considered for neoadjuvant pembrolizumab (200mg intravenously every 3 weeks for 3 doses) prior to surgical resection. Patients receiving neoadjuvant pembrolizumab will also be eligible to receive further pembrolizumab adjuvantly to complete one year of therapy. Patients who have had upfront surgery and have resected stage IIIB-IV melanoma should be considered for adjuvant systemic therapy.

Rationale (continued)

After confirming the presence of resectable stage IIIB-IV melanoma and appropriate imaging to exclude wider systemic metastatic disease, marking of the involved nodal/in-transit disease is an important step prior to initiating neoadjuvant systemic treatment.

In the case of multiple lymph nodes being involved, the largest involved node should be marked (index lymph node). Several options are available (van der Burg 2024). These allow for accurate intra-operative localisation of the initial site of disease at the time of surgery and are particularly important in cases when a complete clinical response prior to surgery occurs. Furthermore, the reporting pathologist can also use this marker to identify the index lymph node and report on the pathological response within this node.

Pathological analysis of the resected disease should report on the pathological response to immunotherapy treatment (see **Clinical Guideline 3.3**). The NADINA trial (Blank et al 2024) demonstrated that in those with a MPR (≤10% viable tumour cells) after neoadjuvant ipilimumab/nivolumab, adjuvant nivolumab could be safely omitted without impacting the recurrence-free survival.

A combination of neoadjuvant and adjuvant pembrolizumab was used in the SWOG1801 trial and, as such, current data supports all patients receiving pembrolizumab to complete a further 18 dose post-operative course when clinically appropriate regardless of the pathological response.

The potential risk of disease progression to an inoperable state when patients undergo neoadjuvant immunotherapy has been assessed. Reassuringly, the risk of progression to systemic metastatic disease whilst on neoadjuvant immunotherapy is low, at approximately 2- 8% (Patel et al 2023, Blank et al 2024). As a result, radiological assessment of the response to neoadjuvant immunotherapy prior to surgery is important to assess for systemic progression of disease. It should be noted that in the OpACIN-NEO study the rate of radiological response was 52%, but the pathological response was 74% (Rozeman 2019) suggesting radiological response may lag or underestimate pathological response.

The technical aspects of surgery among those who received neoadjuvant immunotherapy has been evaluated. A sub-study survey within the neo-ACTIVATE study found that technical aspects of performing a therapeutic lymph node dissection were deemed to be harder in 46% and easier in 17% of cases when compared to a normal, non-neoadjuvant therapeutic lymph node dissection (Hieken 2022). A final concern relating to neoadjuvant therapy relates to the impact of immunotherapy-related adverse events on delaying surgery and increasing the risk of post-operative complications. Pre-operative evaluation for endocrine, liver and cardiac abnormalities should be undertaken, and patients requiring steroid treatment should be postponed until they are improving to a grade 1 adverse event level (van Akkooi et al 2022).

Practice is likely to evolve as further neoadjuvant trial data becomes available. The PRADO trial (Reigers et al 2022) was an extension cohort of the OpACIN-NEO trial evaluating whether using the reported pathological response to personalize follow-on treatment was feasible. In this study, patients underwent index lymph node excision after neoadjuvant ipilimumab/nivolumab. In patients with a MPR, data supported the safety of omitting therapeutic lymph node dissection and adjuvant therapy without significantly impacting the overall clinical outcome. The potential impact on minimizing patient morbidity and effective provision of resources is high. As a result, a randomized study (Multicentre selective lymphadenectomy-III trial) is in process to determine the safety of this surgical approach.

Good practice points

- 5.5.1 Patients with resectable clinical stage IIIB-D and resectable stage IV melanoma should be considered for neoadjuvant ICI therapy and discussed in a melanoma multi-disciplinary meeting.
- 5.5.2 Close co-ordination regarding imaging, ICI therapy and surgery is an important component and should be led by the treating clinicians and clinical nurse specialist.
- 5.5.3 Patients with macroscopic nodal disease should have the diagnosis confirmed through image-guided core biopsy and undergo staging with a combination of whole-body PET-CT and dedicated contrast-enhanced MRI brain.
- 5.5.4 Only patients that are candidates to safely receive both ICI therapy and surgical resection should be considered for a neoadjuvant treatment pathway.
- 5.5.5 Within New Zealand, current neoadjuvant options include at least three doses of pembrolizumab (Pharmac funded) or two doses of combined ipilimumab and nivolumab (not funded).
- 5.5.6 Pre-operative marking of the index lymph node (largest involved node)/in-transit disease should be performed to allow accurate identification during surgery and to guide targeted pathological analysis of site of disease that was dominant prior to commencing neoadjuvant ICI therapy.
- 5.5.7 Pre-operative re-staging imaging (PET-CT or contrast enhanced CT) should be performed to assess for disease progression prior to proceeding with surgery.
- 5.5.8 Surgery should be planned approximately three weeks after completing neoadjuvant ICI therapy.
- 5.5.9 Surgery should involve a full therapeutic nodal dissection of the involved lymph node basin, and/or complete resection of the in-transit disease.
- 5.5.10 Pathological assessment of the resected specimen following neoadjuvant ICI should be completed in line with the details provided in the statement on pathological assessment of neoadjuvant surgical specimens.
- 5.5.11 In patients receiving neoadjuvant pembrolizumab, all patients should be considered for adjuvant treatment to complete one year of perioperative therapy.
- 5.5.12 In patients receiving neoadjuvant ipilimumab/nivolumab (NADINA protocol currently self-funded in NZ), patients with a mPR (≤10% viable tumour cells) can proceed to standard clinical and radiological monitoring without any adjuvant immunotherapy. In patients with a pathological partial response (50-90% response), an adjuvant course of immunotherapy should be offered. In patients with a pathological non-response (<50% pathological response) adjuvant immunotherapy should be considered. In those with a BRAF mutation, preference should be towards a course of an adjuvant BRAF/MEK inhibitor.
- 5.5.13 Amongst patients requiring adjuvant immunotherapy, but who developed significant adverse events during neoadjuvant treatment, consideration should be given towards adjuvant BRAF/MEK inhibitors in those with a BRAF mutation.
- 5.5.14 Adjuvant radiotherapy could be considered in those with a pathological non-response (<50% pathological response) in accordance with current criteria for radiotherapy in melanoma. Adjuvant radiotherapy should be delivered before commencement of adjuvant Pembrolizumab.

- Blank CU, Lucas MW, Scolyer RA et al. 2024. Neoadjuvant Nivolumab and Ipilimumab in Resectable Stage III Melanoma. *N Engl J Med*. 7;391(18):1696-1708.
- Garbe C et al. 2025. European consensus-based interdisciplinary guideline for melanoma. Part 2:
 Treatment Update 2024. Eur J Cancer: 215; 115-153
- Eggermont AMM, Blank CU, Mandalà M, et al. 2021. Adjuvant pembrolizumab versus placebo in resected stage III melanoma (EORTC 1325-MG/KEYNOTE-054): distant metastasis-free survival results from a double-blind, randomised, controlled, phase 3 trial. *Lancet Oncol*. May;22(5):643-654.
- Hieken TJ, Price DL, Piltin MA, et al. 2022. Surgeon Assessment of the Technical Impact of Neoadjuvant Systemic Therapy on Operable Stage III Melanoma. Ann Surg Oncol. 29(2):780-786.
- Long GV, Hauschild A, Santinami M, et al. 2024. Final Results for Adjuvant Dabrafenib plus Trametinib in Stage III Melanoma. N Engl J Med. Nov 7;391(18):1709-1720. (COMBI-AD)
- Menzies AM, Amaria RN, Rozeman EA et al. 2021. Pathological response and survival with neoadjuvant therapy in melanoma: a pooled analysis from the International Neoadjuvant Melanoma Consortium (INMC). Nat Med. 27(2):301-309
- Patel SP, Othus M, Chen Y et al. 2023. Neoadjuvant-Adjuvant or Adjuvant-Only Pembrolizumab in Advanced Melanoma. *N Engl J Med.* 388(9):813-823.
- Reijers ILM, Menzies AM, van Akkooi ACJ et al. 2022. Personalized response-directed surgery and adjuvant therapy after neoadjuvant ipilimumab and nivolumab in high-risk stage III melanoma: the PRADO trial. *Nat Med*. 28(6):1178-1188.
- Rozeman EA, Menzies AM, van Akkooi ACJ et al. 2019. Identification of the optimal combination
 dosing schedule of neoadjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma
 (OpACIN-neo): a multicentre, phase 2, randomised, controlled trial. *Lancet Oncol.* 20(7):948-960.
- van Akkooi ACJ, Hieken TJ, Burton EM et al. 2022. International Neoadjuvant Melanoma
 Consortium (INMC). Neoadjuvant Systemic Therapy (NAST) in Patients with Melanoma: Surgical
 Considerations by the International Neoadjuvant Melanoma Consortium (INMC). Ann Surg Oncol.
 29(6):3694-3708.
- van der Burg SJC, Kuijpers A et al. 2024. Magnetic seed localization is feasible for non-palpable melanoma, Merkel cell carcinoma, and soft tissue sarcoma lesions. Eur J Surg Oncol. 50(10):108485.
- Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. 2022. Long-Term Outcomes With Nivolumab Plus Ipilimumab or Nivolumab Alone Versus Ipilimumab in Patients With Advanced Melanoma. J Clin Oncol. Jan 10;40(2):127-137(Checkmate).

5.6: Adjuvant therapy in locoregionally advanced melanoma

Description

All patients with resected stage III/IV melanoma or stage II (B or C) melanoma are:

- discussed at a melanoma MDM (if management decisions are not straightforward)
- considered for adjuvant systemic treatment (including enrolment in clinical trials) and adjuvant radiotherapy.

Neoadjuvant immunotherapy (i.e., systemic treatment with immune checkpoint inhibitors (ICI) prior to curative intent surgery) is now standard of care for suitable patients with resectable stage III or resectable stage IV disease and should be considered for all suitable patients in this clinical context (see **Clinical Guideline 5.5**).

Rationale

Adjuvant systemic therapies have been shown to improve disease-free survival in patients with resected stage III and IV melanoma (Eggermont et al 2015, 2018; Long et al 2017, 2024; Weber et al 2017). Both Pembrolizumab, and Dabrafenib and Trametinib (for BRAF V600E mutant disease) are now Pharmac funded for adjuvant systemic treatment of resected stage IIIB – resected stage IV melanoma.

There is randomised trial evidence that adjuvant radiation after a lymph node dissection for patients considered at intermediate to high risk of recurrence in the nodal region may decrease the risk of local recurrence but does not improve overall survival (Henderson et al 2015). In the era of effective neoadjuvant and adjuvant systemic therapies for melanoma, the role of adjuvant radiotherapy requires careful MDM evaluation.

Good practice points

- 5.6.1 All patients with resected stage III melanoma should be considered for adjuvant systemic therapy and be discussed in a melanoma multidisciplinary meeting.
 - Patients with resected stage IIIB to resected stage IV melanoma are eligible for Pharmac funded adjuvant systemic therapy with anti-PD1 therapy (Pembrolizumab), or Dabrafenib and Trametinib in the presence of a BRAF mutation
 - All patients with resected stage III IV melanoma should have tumour BRAF mutation testing to aid clinical decision-making regarding adjuvant systemic therapy options
 - Eligible patients with resected stage III IV melanoma should be referred for discussion with a Medical Oncologist regarding the role of adjuvant systemic therapy.
- 5.6.2 Adjuvant Pembrolizumab for 12 months may be considered for all patients with resected stage IIIB IV melanoma. Treatment discussions should consider recurrence-free survival and distant-metastasis free survival benefits, lack of confirmed overall survival benefit and risk of treatment related toxicity.
- 5.6.3 Adjuvant Dabrafenib and Trametinib for 12 months may be considered for patients with resected stage IIIB IV melanoma with a *BRAF V600E* mutation.
- 5.6.4 Adjuvant systemic treatment should be initiated within 12 weeks of complete surgical resection.

Good practice points (continued)

- 5.6.5 Other groups that may be considered for adjuvant systemic therapy include selected patients with resected stage IIB, IIC and stage IIIA (lymph node metastasis >1mm) melanoma (not currently Pharmac funded for these indications).
- 5.6.6 The decision to recommend adjuvant radiation therapy should be made in a melanoma MDM where all options for further local and systemic therapy are addressed. With effective adjuvant systemic therapies now available, the role of adjuvant radiation therapy is evolving.
- 5.6.7 Adjuvant post-operative radiation therapy to regional lymph node basins may be considered in the following situations (Henderson et al 2015) particularly if neoadjuvant or adjuvant therapy is not appropriate or unavailable:
 - palpable (macroscopic) metastatic nodal involvement of one or more parotid nodes, two or more neck or axillary nodes or three or more groin nodes
 - extranodal spread (of tumour)
 - a maximum metastatic node diameter of ≥3 cm in the neck or ≥4 cm in the axilla or groin.
- 5.6.8 Adjuvant post-operative radiation therapy to the primary site may be considered where there are positive margin or recurrent disease.

- Blank CU, Reijers ILM, Saw RPM et al. 2022. Survival data of PRADO: A phase 2 study of
 personalized response-driven surgery and adjuvant therapy after neoadjuvant ipilimumab (IPI)
 and nivolumab (NIVO) in resectable stage III melanoma. *Journal of Clinical Oncology* 40(16): 9501.
- Eggermont AMM, Blank CU, Mandala M, et al. 2018. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. *N Engl J Med* 378: 1,789–801.
- Eggermont AM, Chiarion-Sileni V, Grob JJ, et al. 2015. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. *Lancet Oncol* 16(5): 522–30.
- Henderson MA, Burmeister BH, Ainslie J, et al. 2015. Adjuvant lymph-node field radiotherapy versus observation only in patients with melanoma at high risk of further lymph-node field relapse after lymphadenectomy (ANZMTG 01.02/TROG 02.01): 6-year follow-up of a phase 3, randomised controlled trial. The Lancet Oncology 16(9): 1,049–60.
- Long GV, Hauschild A, Santinami M, et al. 2017. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. *N Engl J Med* 377: 1,813–23.
- Long GV, Saw RPM, Lo S, et al. 2019. Neoadjuvant dabrafenib combined with trametinib for resectable, stage IIIB-C, BRAF^{V600} mutation-positive melanoma (NeoCombi): a single-arm, openlabel, single-centre, phase 2 trial. *The Lancet Oncology* 20(7): 961-971.
- Long GV, Hauschild A, Santinami M, et al. 2024. Final Results for Adjuvant Dabrafenib plus Trametinib in Stage III Melanoma. N Engl J Med. Nov 7;391(18):1709-1720. (COMBI-AD)
- Patel SP, Othus M, Chen Y, et al. 2023. Neoadjuvant–Adjuvant or Adjuvant-Only Pembrolizumab in Advanced Melanoma. *New England Journal of Medicine 388:813-823*.
- Rozeman EA, Menzies AM, van Akkooi ACJ et al. 2019. Identification of the optimal combination
 dosing schedule of neoadjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma
 (OpACIN-neo): a multicentre, phase 2, randomised, controlled trial. The Lancet Oncology 20(7):
 948-960.

- Seth R, Messersmith H, Kaur V, et al. 2020. Systemic therapy for melanoma: ASCO guideline. *J Clin Oncol* 38(33): 3,947–70. DOI: 10.1200/JCO.20.00198. Epub 2020 Mar 31. PMID: 32228358.
- Te Aho o Te Kahu. 2022. Mārama ana ki te Āputa: he tātari i te wāteatanga o ngā rongoā mate pukupuku i Aotearoa | Understanding the Gap: an analysis of the availability of cancer medicines in Aotearoa. Wellington: Te Aho o Te Kahu.
- Weber J, Mandala M, Del Vecchio M, et al. 2017. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. *New England Journal of Medicine* 377(19): 1,824–35.

5.7: Patients with loco-regionally recurrent, locally advanced and metastatic melanoma

Description

Patients with loco-regionally recurrent, locally advanced or metastatic melanoma are seen or discussed by melanoma specialists experienced in the care of melanoma patients and part of a melanoma MDM. Patients should be staged as per **Clinical Guideline 3.6.**

Rationale

Historically the prognosis for patients with advanced melanoma was dismal, with less than 10% of patients surviving beyond five years. Effective systemic therapies including Immune-checkpoint inhibitors (ICIs) and targeted therapy (BRAF/MEK inhibitors) have transformed the management of advanced melanoma. With anti-PD1 ICIs, up to 50% of patients with advanced melanoma may achieve durable disease control.

Approximately 40% of advanced melanoma are driven by an activating mutation in BRAF. BRAF V600 testing is recommended for all patients with advanced melanoma. Targeted therapy with BRAF/MEK inhibitors are an active therapy for patients with BRAF V600 mutation, with median progression-free survival of 11-15 months (Robert et al 2019, Ascierto PA et al 2021, Drummer et al 2018).

Some patients with metastatic melanoma will present with surgically resectable disease. Surgery is an option for select patients, preferentially combined with neoadjuvant or adjuvant systemic therapy.

Radiation treatment has been shown to be effective in controlling microscopic disease, palliating symptoms and decreasing recurrence of melanoma after surgery (Henderson et al 2015).

Stereotactic radiation treatment of melanoma brain metastases gives high rates of local control (Nieder et al 2014).

Good practice points

Medical oncology

- 5.7.1 Where treatment is being considered, patients with advanced melanoma (unresectable stage III or IV disease) should have their tumour assessed for the presence of the BRAF V600 mutation.
- 5.7.2 Anti-PD1 therapy is standard-of-care for patients with unresectable stage III or IV disease.
- 5.7.3 Both anti-PD1 monotherapy and combination immune checkpoint inhibitor with anti-PD1 + anti-CTLA4 or anti-PD1 + anti-LAG3 are acceptable first-line systemic therapy options for patients with advanced melanoma.
- 5.7.4 Targeted therapy with BRAF/MEK inhibitors is an effective systemic therapy for patients with advanced melanoma with a BRAF V600 mutation.
- 5.7.5 Preferred first-line therapy for patients with advanced melanoma with a BRAF V600 mutation is an anti-PD1 based regimen.

Good practice points (continued)

Surgery

- 5.7.6 Where there are multiple dermal recurrences: surgical excision/ablation, and/or systemic checkpoint inhibitor or targeted therapies are considered as first line treatment. Where these have failed or are not appropriate, intralesional or topical treatments may be appropriate.
- 5.7.7 ILI should be considered in patients who have failed all other treatment options (currently provided by Te Whatu Ora Waitematā).
- 5.7.8 Isolated clinical recurrence in a previously resected node field is considered for neoadjuvant immunotherapy and subsequent resection when possible. If, on staging PET-CT, there is distant disease, checkpoint inhibitor immunotherapy or targeted therapy should be initiated if clinically appropriate.
- 5.7.9 For patients with asymptomatic oligometastatic disease, for example, bowel, liver, lung or adrenal, neoadjuvant immunotherapy and follow-on surgical resection or radiation is considered along with adjuvant treatment options (radiotherapy or systemic treatment).
- 5.7.10 For patients with limited brain metastasis and no or minimal extracranial disease, resection of the brain metastasis is considered.
- 5.7.11 For patients with single-level spinal cord compression and minimal or no other metastatic disease, urgent surgical or radiation treatment is considered.

Radiation oncology

- 5.7.12 Stereotactic radiation treatment is considered for patients with a single or a small number of brain metastases and minimal or controlled extracranial disease.
- 5.7.13 Radiation to the tumour bed cavity after resection of a brain metastasis could be considered. Whole brain radiation treatment has not been shown to improve survival outcomes following local treatment of brain metastases from melanoma.
- 5.7.14 For patients with multiple brain metastases, whole brain radiation therapy may provide some palliative benefits.
- 5.7.15 Patients with localised symptoms from melanoma metastases at any site are considered for referral for radiation treatment to these sites.

- Ascierto PA, Dréno B, Larkin J et al. 2021. 5-Year Outcomes with Cobimetinib plus Vemurafenib in BRAFV600 Mutation–Positive Advanced Melanoma: Extended Follow-up of the coBRIM Study. Clin Cancer Res. 27 (19): 5225–5235.
- Bello DM. 2019. Indications for the surgical resection of stage IV disease. *J Surg Oncol* 119(2): 249–61.
- Drummer R, Ascierto PA, Gogas HJ et al. 2018. Encorafenib plus binimetinib versus vemurafenib
 or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS); a multicentre, open-label,
 randomised phase 3 trial. The Lancet Oncology. 19(5): 603 615.
- Henderson MA, Burmeister BH, Ainslie J, et al. 2015. Adjuvant lymph-node field radiotherapy versus observation only in patients with melanoma at high risk of further lymph-node field relapse after lymphadenectomy (ANZMTG 01.02/TROG 02.01): 6-year follow-up of a phase 3, randomised controlled trial. *Lancet Oncol* 16(9): 1,049–60.

- Larkin J, Chiarion-Sileni V, Gonzalez R et al. 2019. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. *N Engl J Med* 381: 1535 1546.
- Mahajan A, Ahmed S, McAleer MF, et al. 2017. Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-centre, randomised, controlled, phase 3 trial. *Lancet Oncol* 18(8): 1,040–48.
- Nieder C, Grosu AL, Gaspar LE. 2014. Stereotactic radiosurgery (SRS) for brain metastases: a systematic review. *Radiation Oncology* 9(1): 1–9.
- Robert C, Grob JJ, Stroyakovskiy D et al. 2019. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. *N Engl J Med*. 381: 626 636.
- Seth R, Messersmith H, Kaur V, et al. 2020. Systemic therapy for melanoma: ASCO guideline. *J Clin Oncol* 38(33): 3,947–70. DOI: 10.1200/JCO.20.00198. Epub 2020 Mar 31. PMID: 32228358.
- Tawbi HA, Schadendorf D, Lipson EJ et al. 2022. Relatlimab and Nivolumab versus Nivolumab in untreated advanced melanoma. *N Engl J Med.* 386: 24 34.
- Te Aho o Te Kahu. 2022. Mārama ana ki te Āputa: he tātari i te wāteatanga o ngā rongoā mate pukupuku i Aotearoa | Understanding the Gap: an analysis of the availability of cancer medicines in Aotearoa. Wellington: Te Aho o Te Kahu.

CLINICAL GUIDELINE 6: Follow-up and surveillance

6.1: Clinical follow-up and surveillance

Description

Follow-up is carried out by a health care professional experienced in melanoma diagnosis and management. The health care professional may be a specialist, GP, nurse practitioner or a combination working in conjunction with the patient and their family/whānau.

Rationale

The purpose of follow-up is to:

- · detect recurrence early
- · detect new primary melanoma
- provide ongoing patient education regarding self-examination and safe sun exposure
- provide psychosocial support
- detect lymphoedema

Historically, recommendations for follow-up schedules were based on expert opinion (Francken et al 2005, 2008; Nieweg and Kroon 2006; Dicker et al 1999; Speijers et al 2010; Francken and Hoekstra 2009; Marsden et al 2010; Swetter et al 2019; Turner et al 2011). The only RCT directly comparing follow-up frequency, MELFO (Netherlands), demonstrated that a reduced, stage-adjusted schedule was as safe as conventional schedules for stage IB–IIC melanoma at one and three years, with lower patient stress and healthcare use (Damude et al 2016, Deckers et al 2020).

MELFO-UK prospectively validated the reduced schedule in UK routine care, finding no excess adverse outcomes over ~3 years (Moncrieff et al 2020).

Since 2019, patient preference studies and systematic reviews have reinforced the safety and acceptability of alternative follow-up modalities. In particular, the MEL-SELF randomized clinical trial demonstrated that app-supported self-examination with teledermoscopy is safe, feasible, and acceptable, and enabled earlier detection of new melanomas compared to clinician-led follow-up (Ackermann et al 2022, Drabarek et al 2022). Furthermore, a recent meta-analysis found that reduced-frequency follow-up in early-stage melanoma is non-inferior to conventional schedules, and speculates that teleconsultations may help meet patients' needs while reducing clinic burden (Richter et al 2023). Contemporary guidance now supports individualised, stage- and risk-based schedules, often incorporating technology-enabled surveillance.

Overall studies in stages I–III disease show 80% of recurrences occur within the first 3 years. The risk for recurrence for all stages after 10 years decreases to approximately 1% (Cancer Council Australia Melanoma Guidelines Working Party 2019). However, for stage I melanoma, almost 25% of melanoma-related deaths occur after 10 years. Those with melanoma 0.9–1.0mm thick being at significantly greater risk than those with melanoma 0.8 mm or thinner (Lo et al 2018).

Rationale (continued)

Patients with a history of melanoma (including melanoma in situ) have an increased risk of developing subsequent primary melanoma (Kang et al 1992, Johnson et al 1998, Goggins et al 2003, Schoellhammer et al 2009, Youlden et al 2014. Pomerantz et al 2015. Cust et al 2020).

The risk varies significantly between patients (Müller et al 2019, Pastor-Tomás al 2020) and the risk factors may be different to first primary melanoma risk factors (Müller et al 2019, Cust et al 2020). There is little benefit in long term extension of follow-up beyond 10 years except for patients with additional risk factors and these patients should be provided access to long-term dermatologic exams and encouraged to perform 3-monthly regular self-examination.).

Good practice points

- 6.1.1 Clinical surveillance consists of a review of systems for signs or symptoms of disease recurrence, physical examination of the excision scar and surrounding skin, regional and distant lymph node examination, and head-to-toe dermatoscopic skin examination.
- 6.1.2 Follow-up visits should involve a thorough history focusing on symptoms that can indicate recurrent disease. For example: new skin lesions, palpable tumours in lymph node fields and unexplained systemic complaints such as fatigue, shortness of breath, headache or gastrointestinal symptoms.
- 6.1.3 Follow-up visits should include examination of the primary melanoma site and a physical examination for lymphadenopathy. Particular attention should be given to the in-transit pathway, that is, the skin between the site of the melanoma and the draining lymph node field(s).
- 6.1.4 Establish a monitoring process for patients at risk of lymphoedema development:
 - Closely monitor any symptoms, especially during first year after surgery (Hyngstrom et al 2013).
 - It is recommended to use Bio-Impedance method to identify the condition at a subclinical stage (Hidding et al 2016; Ridner et al 2019).
 - Raise awareness among patients and educate regarding any symptoms during follow up.
 - Ensure access to early interventions if symptoms are detected and/ or there is 5% to 10% increase in limb volume (Rockson et al 2019)
- 6.1.5 Recommended follow-up protocols assessing for new melanomas, disease recurrence/metastatic spread are as follows:
 - stage 0 melanoma in situ; assess annually over the long-term by a clinician experienced in dermoscopy
 - stage IA melanoma should be assessed annually for at least 10 years.
 - stage IB, IIA melanoma should be assessed 6 monthly for 2 years and then annually until the 10th anniversary.
 - stage IB and above melanoma with no SNB should receive 6 monthly US of draining node fields for 2 years.
 - stage IIB-IIC, IIIA-D melanoma should be assessed 4 monthly for 2 years, 6 monthly in the third year and annually thereafter until the 10th anniversary.
 - stage IV melanoma should be assessed as for stage III, with additional visits as per clinical requirements.

Good practice points (continued)

- 6.1.6 Follow-up frequency and duration may vary depending on the patient's needs and risk assessment. It may be appropriate to follow-up stage I melanoma beyond 10 years because of the late mortality in this group (Lo et al 2018) and higher risk patients (including patients with a previous diagnosis of melanoma in situ or past history of non-melanoma skin cancer), including those over 65 years of age, high risk sites (acral, scalp and neck) and nodular subtype (Green et al 2012).
- 6.1.7 Any person diagnosed with melanoma in situ should be offered annual complete dermatoscopic skin checks for at least 10 years for early identification and treatment of new suspicious skin lesions. Lifelong annual surveillance is recommended for patients with multiple melanomas, atypical mole syndrome, multiple naevi (especially >100 naevi) and/or atypical naevi (Gandini et al 2005), for whom digital dermatoscopic surveillance is also recommended. Lifelong biennial skin checks are also recommended for patients over 65 years, Fitzpatrick skin type I or II, significant actinic keratosis, or a history of epithelial cancers such as BCC's or SCC's (Müller et al 2019). Risk for subsequent melanomas can be calculated through the Melanoma Institute of Australia Subsequent Primary Melanoma Risk Calculator (Melanoma Institute Australia 2021).
- 6.1.8 A written follow-up plan should be made with the patient and given to the patient and their GP. A lead clinician should be nominated and made known to the patient and GP. Ideally, this would change from a hospital-based clinician to a primary health care clinician once hospital-level care has been completed (Nashan et al 2004, Murchie et al 2010, Francken et al 2010).
- 6.1.9 The lead clinician should be responsible for maintaining and actioning the patient's melanoma follow-up, investigation requests and results.

 Recalling and corresponding with the patient may be delegated to other health care providers.
- 6.1.10 Follow-up should provide patients with clinically appropriate reassurance and psychosocial support. Many patients experience anxiety before and during their follow-up visits. Some patients may require additional follow-up visits for reassurance (Rychetnik et al 2013).

- Ackermann DM, Dieng M, Medcalf E, et al. 2022. Assessing the Potential for Patient-led Surveillance After Treatment of Localized Melanoma (MEL-SELF): A Pilot Randomized Clinical Trial. JAMA Dermatol. 158(1):33-42.
- Australian Cancer Network and The New Zealand Guidelines Group Melanoma Guidelines
 Revision Working Party. 2008. Clinical Practice Guidelines for the Management of Melanoma in
 Australia and New Zealand. Sydney: The Cancer Council Australia and Australian Cancer Network
 and Wellington: New Zealand Guidelines Group. URL:
 - www.health.govt.nz/publication/clinical-practice-guidelines-management-melanoma-australia-and-new-zealand
- Cust AE, Badcock C, Smith J, et al. 2020. A risk prediction model for the development of subsequent primary melanoma in a population-based cohort. *Br J Dermatol* 182(5): 1,148–57.
- Damude S, Hoekstra-Weebers JE, Francken AB, et al. 2016. The MELFO-Study: prospective, randomized, clinical trial for the evaluation of a stage-adjusted reduced follow-up schedule in cutaneous melanoma patients-results after 1 year. *Ann Surg Oncol* 23(9): 2,762–71.

- Deckers EA, Hoekstra-Weebers J, Damude S, et al. 2020. The MELFO Study: A Multicenter, Prospective, Randomized Clinical Trial on the Effects of a Reduced Stage-Adjusted Follow-Up Schedule on Cutaneous Melanoma IB-IIC Patients-Results After 3 Years. Ann. Surg. Oncol.;27:1407–1417.
- Dicker TJ, Kavanagh GM, Herd RM, et al. 1999. A rational approach to melanoma follow-up in patients with primary cutaneous melanoma. Scottish Melanoma Group. Br J Dermatol 140(2): 249–54.
- Drabarek D, Habgood E, Janda M, et al. 2022. Experiences of patient-led surveillance, including patient-performed teledermoscopy, in the MEL-SELF pilot randomized controlled trial: qualitative interview study. *JMIR Dermatol.* 5(3):e35916.
- Francken AB, Accortt NA, Shaw HM, et al. 2008. Follow-up schedules after treatment for malignant melanoma. *Br J Surg* 95(11): 1,401–7.
- Francken AB, Bastiaannet E, Hoekstra HJ. 2005. Follow-up in patients with localised primary cutaneous melanoma. *Lancet Oncol* 6(8): 608–21.
- Francken AB, Hoekstra HJ. 2009. Follow-up of melanoma patients: the need for evidence-based protocols. *Annals of Surgical Oncology* 16(4): 804–5.
- Francken AB, Hoekstra-Weebers JW, Hoekstra HJ. 2010. Is GP-led follow-up feasible? *British Journal of Cancer* 102(10): 1,445–6.
- Gandini S, Sera F, Cattaruzza MS, et al. 2005. Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. *European Journal of Cancer* 41(1): 28–44.
- Green AC, Baade P, Coory M, et al. 2012. Population-based 20-year survival among people diagnosed with thin melanomas in Queensland, Australia. *J Clin Oncol* 30(13): 1,462–7.
- Goggins WB, Tsao H. 2003. A population-based analysis of risk factors for a second primary cutaneous melanoma among melanoma survivors. *Cancer* 97(3): 639–43.
- Hidding J.T, Viehoff P.B, et.al. 2016. Measurement Properties of Instruments for Measuring of Lymphedema: Systematic Review, *Physical Therapy*, 96(12): 1965–1981.
- Hyngstrom, J. R., Chiang, et al. 2013. Prospective assessment of lymphedema incidence and lymphedema-associated symptoms following lymph node surgery for melanoma. *Melanoma* research, 23(4), 290–297.
- Johnson TM, Hamilton T, Lowe L. 1998. Multiple primary melanomas. J Am Acad Dermatol 39(3): 422–7.
- Kang S, Barnhill RL, Mihm MC Jr, et al. 1992. Multiple primary cutaneous melanomas. Cancer 70(7): 1,911–6.
- Leiter U, Buettner PG, Eigentler TK, et al. 2012. Hazard rates for recurrent and secondary cutaneous melanoma: an analysis of 33,384 patients in the German Central Malignant Melanoma Registry. J Am Acad Dermatol 66(1): 37–45.
- Lo SN, Scolyer RA, Thompson JF. 2018. Long-term survival of patients with thin (T1) cutaneous melanomas: a Breslow thickness cut point of 0.8 mm separates higher-risk and lower-risk tumors. *Ann Surg Oncol* 25(4): 894–902.
- Marsden JR, Newton-Bishop JA, Burrows L, et al. 2010. Revised UK guidelines for the management of cutaneous melanoma 2010. J Plast Reconstr Aesthet Surg 63(9): 1,401–19.
- Melanoma Institute of Australia. 2021. MIA Prediction Tool for Sentinel Node Metastasis Risk.
 URL: www.melanomarisk.org.au/SubMelForm

- Moncrieff MD, Underwood B, Garioch J, et al. 2020. The MelFo Study UK: Effects of a Reduced-Frequency, Stage-Adjusted Follow-Up Schedule for Cutaneous Melanoma 1B to 2C Patients After 3-Years. Ann. Surg. Oncol. 27:4109–4119.
- Müller C, Wendt J, Rauscher S, et al. 2019. Risk factors of subsequent primary melanomas in Austria. *JAMA Dermatol* 155(2): 188–95.
- Murchie P, Nicolson MC, Hannaford PC, et al. 2010. Patient satisfaction with GP-led melanoma follow-up: a randomised controlled trial. *British Journal of cancer* 102(10): 1,447–55.
- Nashan D, Kirschner F, Strittmatter G, et al. 2004. Patients' view of melanoma follow-up. *J Dtsch Dermatol Ges* 2(2): 105–10.
- Nieweg OE, Kroon BB. 2006. The conundrum of follow-up: should it be abandoned? *Surg Oncol Clin N Am* 15(2): 319–30.
- Pastor-Tomás N, Martínez-Franco A, Bañuls J, et al. 2020. Risk factors for the development of a second melanoma in patients with cutaneous melanoma. J Eur Acad Dermatol Venereol 34(10): 2,295–2,302.
- Pomerantz H, Huang D, Weinstock MA. 2015. Risk of subsequent melanoma after melanoma in situ and invasive melanoma: a population-based study from 1973 to 2011. *J Am Acad Dermatol* 72(5): 794–800.
- Richter K, Stefura T, Kłos N, et al. 2023. Conventional versus reduced-frequency follow-up in early-stage melanoma survivors: a systematic review with meta-analysis. *Curr Oncol*. 2023;30(3):3366-72.
- Ridner, S. H., Dietrich, M. S, et al. 2019. A Randomized Trial Evaluating Bioimpedance
 Spectroscopy Versus Tape Measurement for the Prevention of Lymphedema Following Treatment
 for Breast Cancer: Interim Analysis. *Annals of surgical oncology*, 26(10), 3250–3259.
- Rockson, S. G, Keeley, V, et al. 2019. Cancer-associated secondary lymphoedema. *Nature reviews. Disease primers*, *5*(1), 22.
- Rychetnik L, McCaffery K, Morton R, et al. 2013. Psychosocial aspects of post-treatment follow-up for stage I/II melanoma: a systematic review of the literature. *Psychooncology* 22(4): 721–36.
- Salama AK, de Rosa N, Scheri RP, et al. 2013. Hazard-rate analysis and patterns of recurrence in early stage melanoma: moving towards a rationally designed surveillance strategy. PLoS One 8(3): e57665.
- Schoellhammer HF, Torisu-Itakura H, Huynh Y, et al. 2009. Second primary melanoma: Risk factors, histopathologic features, and survival. *J Clin Oncol* 27:15s (suppl; abstr 9073).
- Speijers MJ, Francken AB, Hoekstra-Weebers JEHM, et al. 2010. Optimal follow-up for melanoma.
 Expert Review of Dermatology 5(4): 461–78.
- Swetter SM, Tsao H, Bichakjian CK, et al. 2019. Guidelines of care for the management of primary cutaneous melanoma. *Journal of the American Academy of Dermatology* 80(1): 208–50.
- Turner RM, Bell KJ, Morton RL, et al. 2011. Optimizing the frequency of follow-up visits for patients treated for localized primary cutaneous melanoma. *J Clin Oncol* 29(35): 4,641–46.
- Vuong K, McGeechan K, Armstrong BK, et al. 2014. Risk prediction models for incident primary cutaneous melanoma: a systematic review. JAMA Dermatol 150(4): 434–44.
- Youlden DR, Youl PH, Soyer HP, et al. 2014. Distribution of subsequent primary invasive melanomas following a first primary invasive or in situ melanoma Queensland, Australia. JAMA Dermatol 150(5): 526–34.

6.2: Patient self-examination

Description	Patient self-examination is taught as an integral part of melanoma follow-up.	
Rationale	Patient education in self-skin examination (SSE) is a cornerstone of melanoma follow-up. Evidence indicates that trained patients can detect new primary or recurrent melanomas earlier than routine scheduled visits alone. The MEL-SELF pilot randomized controlled trial demonstrated that patient-led surveillance, including structured SSE and use of teledermatology, resulted in earlier detection of 8% of new melanomas ahead of scheduled clinic visits, compared with none in clinician-led surveillance alone. This complements earlier data showing high rates of self-detection in both Australia and internationally, with estimates ranging from 62–75% (Ruark et al 1993; Francken et al 2005, 2007; Jillella et al 1995), and supports SSE as an essential part of follow-up planning.	
Good practice points	 6.2.1 Education and raining: Patients should be provided with written information and in-person instruction on how to systematically self-examine their skin and regional lymph nodes. The ABCDEFG rule or the SCAN rule is recommended for identifying suspicious lesions. Education should include instruction on lesion photography and when to seek professional review. 6.2.2 Digital and teledermatology support: Patients using smartphone dermatoscopes as part of SSE should be encouraged to use validated applications. 	
	6.2.3 Patient adoption of smartphone applications to communicate suspicious lesions to the lead carer is encouraged. Studies, including MEL-SELF have confirmed that patients are accepting of and capable of taking high-quality images at home to facilitate teledermatology (Janda et al 2019; Manahan et al 2015; Wu et al 2015; Horsham et al 2016).	
	6.2.4 Integration into follow-up schedules: Patient-led surveillance should complement, not replace, clinician-led follow-up. Regular SSE and timely reporting of suspicious lesions may reduce the need for routine in-person visits while ensuring early detection of new or recurrent melanoma. Structured training and ongoing support are key to optimizing adherence and accuracy.	

- Ackermann DM, Dieng M, Medcalf E, et al. 2022. Assessing the potential for patient-led surveillance after treatment of localized melanoma: A pilot randomized controlled trial (the MEL-SELF pilot trial). JAMA Dermatology, 158(1), 33–42.
- Francken AB, Bastiaannet E, Hoekstra HJ. 2005. Follow-up in patients with localised primary cutaneous melanoma. Lancet Oncol 6(8): 608–21.
- Francken AB, Shaw HM, Accortt NA, et al. 2007. Detection of first relapse in cutaneous melanoma patients: implications for the formulation of evidence-based follow-up guidelines. *Ann Surg Oncol* 14(6): 1,924–33.
- Horsham C, Loescher LJ, Whiteman DC, et al. 2016. Consumer acceptance of patient-performed mobile teledermoscopy for the early detection of melanoma. *Br J Dermatol* 175(6): 1,301–10.
- Janda M, Horsham C, Koh U, et al. 2019. Redesigning skin cancer early detection and care using a new mobile health application: protocol of the SKIN Research Project, a Randomised Controlled Trial. *Dermatology* 235(1): 11–8.

- Jillella A, Mani S, Nair B, et al. 1995. The role for close follow-up of melanoma patients with AJCC stages I-III: a preliminary analysis. *Proc Am Soc Clin Oncol*: 13.
- Manahan MN, Soyer HP, Loescher LJ, et al. 2015. A pilot trial of mobile, patient-performed teledermoscopy. *Br J Dermatol* 172(4): 1,072–80.
- Ruark DS, Shaw HM, Ingvar C, et al. 1993. Who detects the first recurrence in stage I cutaneous malignant melanoma: patient or doctor? *Melanoma Research* 3(1): 44.
- Turner RM, Bell KJ, Morton RL, et al. 2011. Optimizing the frequency of follow-up visits for patients treated for localized primary cutaneous melanoma. *J Clin Oncol* 29(35): 4,641–46.
- Wu X, Oliveria SA, Yagerman S, et al. 2015. Feasibility and efficacy of patient-initiated mobile teledermoscopy for short-term monitoring of clinically atypical nevi. *JAMA Dermatol* 151(5): 489–96.

6.3: Follow-up cross-sectional imaging

Description

Follow-up cross-sectional imaging (CT or PET-CT) can be divided into surveillance (for those with no residual disease post-surgery and/or therapy), as monitoring/restaging during treatment or to reassess if new symptoms develop. It should be determined by stage, symptoms/clinical findings and suitability for therapy.

Asymptomatic metastases may be appropriate for immunotherapy with a curative intent, surgery or radiotherapy. If patient factors/co-morbidities deem patients unfit for any further treatment, do not perform routine surveillance.

Rationale

These recommendations are made accepting that individual centre's resources and protocols may differ but should be considered as best practice.

See **Appendix 6** for example follow up schedule.

Body imaging

The optimal cross-sectional imaging (PET-CT or CT) surveillance regime for high-risk melanoma remains controversial, and there is currently no international consensus. Even in high-risk melanoma patients, there are no high-quality data to indicate improved survival outcomes following routine follow-up cross-sectional imaging (Dieng et al 2022). However it is generally agreed that in the rapidly changing landscape of therapeutic options, early detection may allow for improved outcomes (Yan et al 2022).

It is generally agreed that PET-CT has superior diagnostic accuracy over conventional CT (Xing et al 2011). In those clinical settings where CT findings are equivocal or there are clinical findings highly suspicious for recurrence, PET-CT results may alter the treatment course, particularly when surgery is being considered (Schüle et al 2016). There are, however, no prospective data that directly compare the two modalities with regard to the magnitude of differences in survival outcomes.

For patients with T4 tumours, baseline staging with PET-CT is controversial, due to low yield and high false-positive rate (as discussed in **Clinical Guideline 3.6**). There are, however, significant relapse rates, particularly in patients with stage IIC disease. In a retrospective study of pathologic stage II patients by Lee et al (2017), 46% of stage IIC patients relapsed, and of those, 52% of first relapses were systemic. Imaging detected relapse in 31% of these patients. Stage IIC patients notably relapsed earlier with a higher proportion of systemic metastases (especially in lung and brain) when compared to other stage II subgroups. Bleischer et al 2020 retrospective cohort study of Stage II melanoma patients reported that 27% of patients recurred and 27% of those recurrences were detected by surveillance imaging. Of those who recurred with Stage IIC melanoma, imaging detected recurrence in 44%. The National Institute for Health and Care (NICE) guidelines (July 2022) suggest considering baseline staging and surveillance CT imaging for stage IIB disease and offering staging and surveillance imaging for Stage IIC disease.

Rationale (continued)

From the limited data available, baseline staging cross-sectional imaging in patients with a positive SLN (stage IIIA with low nodal tumour volume) appears to be of little benefit, with low yield and high rates of false-positive tests (Holtkamp et al 2017; Lewin et al 2018; Scheier et al 2015). This can lead to further unnecessary investigations, some of which may be invasive/morbid. However, the rate of recurrence in this group is not insignificant. Although a high percentage of first relapses are loco-regional and often detected by the patient or clinician, a less intensive PET-CT surveillance regime in this group has been shown to detect asymptomatic recurrence/progression with 70% sensitivity and 87% specificity (Lewin et al 2018).

The approach to cross-sectional imaging surveillance of patients with higher stage III and stage IV disease varies widely. For example, the National Comprehensive Cancer Network (NCCN) in the United States suggests follow-up PET-CT or CT every 3–12 months for 2 years, then 6-12 months for another 3yrs to screen for recurrence or metastatic disease (NCCN 2025).

Regarding salvage curative surgery, radiotherapy or emerging systemic therapies, there is some evidence that treatments are more effective in the setting of low tumour volume, making early detection of recurrence and/or distant metastatic disease relevant (Ibrahim et al 2020, Freeman et al 2019; Joseph et al 2018, Leon-Ferre et al 2017). In conjunction with intensive clinical follow-up, the addition of routine cross-sectional imaging does allow earlier detection of recurrent disease (Park et al 2017, Lim et al 2018), but the impact on overall survival is still unclear (Podlipnik et al 2016). Cross-sectional imaging follow-up should be guided by the probability of recurrence at any stage. For patients with asymptomatic stage IIIB, C, D or stage IV disease, more frequent cross-sectional imaging, for example, 3-6 monthly in the first 3 years, should be considered, when the rates of recurrence are highest. Particularly in stage III disease, a sub-stage approach to follow-up regimes may be beneficial (Melanoma Focus 2023, Lewin et al 2018). Recently, it has been reported that CT and PET-CT have reasonable sensitivity and specificity for detection of recurrence over long follow-up periods (Turner et al. 2021). Surveillance CT has also been shown to be cost-effective (Podlipnik et al 2019)

With emerging systemic therapies, routine follow-up cross-sectional imaging also provides assessment of therapeutic response. In particular, the apparently high negative predictive value of PET-CT seems to be reasonably consistent and notably reassuring (Leon-Ferre et al 2017).

In stage IIC, stage IIIB, C, D and stage IV disease, more frequent surveillance imaging (for example, 3, 4 or 6 monthly in the first 3 years) is recommended with the aim of detecting relapse at an earlier time point (Lim et al 2018, Garbe et al 2024). This acknowledges that although the actual benefit of earlier imaging detection on survival outcomes is not yet known, there are now more treatment options available.

For younger patients, it is important to consider minimising ionizing radiation dose. This can be achieved by limiting the scan range, using lower dose CT techniques or MRI instead where possible. For example, low dose chest CT with MRI abdomen/pelvis +/- brain MRI. Dose reduction techniques can be employed in PET CT scanning by reducing the radiopharmaceutical dose and using non diagnostic quality low dose CT (Kaste 2011). For pregnant patients, risks to the foetus from CT and MRI vary at different stages of the pregnancy. In lower risk pregnant patients, surveillance may be delayed to the postpartum period. For both these groups, the imaging strategy should be considered specifically for each patient and may need consultation with a radiologist (Melanoma Focus 2023).

Brain imaging

It is widely accepted that MRI is superior to CT for the detection of cerebral metastases.

The AJCC recognises that patients with central nervous system metastases have the worst prognosis of all melanoma patients with distant metastatic disease (M1d category) (Amin et al 2017).

The incidence of developing brain metastases increases with TNM stage. For stage III patients, macroscopic nodal and in-transit disease has been associated with an increased risk of brain metastases (Samlowski et al 2017). There has also been an association between primary tumour ulceration and development of brain metastasis (Zakrzewski et al 2011) and increased mitotic rate (Haydu et al 2020).

As with relapse at other sites, development of brain metastases generally occurs in the first 3 years (Samlowski et al 2017; Fife et al 2004).

Previously, the poor prognosis of those with brain metastases may have precluded routine surveillance for those at risk. However, with the recent advances in surgery, stereotactic radiotherapy and systemic therapy, there are improved treatment outcomes (particularly in the setting of smaller tumour volume and asymptomatic lesions).

This would suggest that earlier detection increases the treatment options available to patients, although there is little evidence as yet to directly confirm this (Eggen et al 2021).

Given the prognostic implications and treatment options available in low-volume metastatic brain disease, regular surveillance brain imaging is recommended for patients with stage IIC, stage IIIB, C, D and stage IV disease in the first 3 years with less frequent surveillance following this. Contrast-enhanced brain MRI is preferred over contrast-enhanced CT due to improved diagnostic accuracy (particularly if there is previous documented metastatic brain disease).

Good practice points

6.3.1 Stage I and II (A and B)

For patients with stage I or II (A and B) disease, routine surveillance imaging is not recommended if the patient is asymptomatic, unless sentinel node biopsy is omitted. See **Clinical Guideline 6.4**.

6.3.2 Stage IIC, III and IV

In asymptomatic patients, routine follow-up with contrast-enhanced CT of the chest, abdomen and pelvis (\pm neck) can be considered at 3- to 12-monthly intervals in the first 3–5 years as stratified by clinical stage and time from diagnosis.

Surveillance high-resolution brain imaging (brain MRI or contrastenhanced CT head) should be considered in high-risk patients at 3- to 12-monthly intervals in the first 3–5 years as stratified by clinical stage and time from diagnosis.

The following is recommended as a guide to follow-up imaging - see **Appendix 6** for a tabulated example follow up schedule.

- stage IIC: CT chest, abdomen and pelvis ± neck and brain MRI or CT head 6 monthly for 3 years. Consider annual surveillance imaging in years 3–5 following diagnosis.
- stage IIIA: CT chest, abdomen and pelvis (± neck) at 6 months and then at 12 months. Annually after that until the third anniversary.
- stage IIIB, C, D and stage IV: CT chest, abdomen and pelvis ± neck and brain MRI or CT head 3–6 monthly for 3 years. Annual follow-up imaging in years 3–5 following diagnosis.

Good practice points (continued)	6.3.3	If a patient develops suspicious clinical or equivocal radiological findings, biopsy-proven local recurrence or distant metastatic disease, PET-CT is recommended if the patient is a candidate for further surgical management, radiotherapy or systemic therapy. When CT has shown widespread metastatic disease and PET-CT will not change the planned management, the latter can be omitted.
	6.3.4	For patients with stage III and stage IV disease on active treatment (systemic therapy or radiotherapy), the follow-up imaging schedule will be determined by the oncology team, likely based on symptomatology and/or for response assessment. The above schedule, however, may be a useful guide to the desirable minimum frequency of imaging.
	6.3.5	In younger or pregnant patients, attempts should be made to minimise exposure to ionizing radiation which may include low dose CT techniques and/or MRI instead. An appropriate imaging strategy should be individualised for these patients, and may require consultation with a radiologist
	6.3.6	If patient factors/comorbidities deem patients unfit for further treatment, do not perform routine follow-up imaging.

References

- Amin MB, Edge S, Greene F, et al (eds). 2017. *AJCC Cancer Staging Manual (8th edition)*. Switzerland: Springer.
- Bleicher J, Swords DS, Mali ME, et al. 2020. Recurrence patterns in patients with Stage II melanoma: The evolving role of routine imaging for surveillance. J Surg Oncol.122(8):1770-1777.
- Dieng M, Lord SJ, Turner RM et al. 2022. The Impact of Surveillance Imaging Frequency on the Detection of Distant Disease for Patients with Resected Stage III Melanoma. Ann Surg Oncol. 2871-2881.
- Eggen AC, Wind TT, Bosma I, et al. 2021. Value of screening and follow-up brain MRI scans in patients with metastatic melanoma. *Cancer Med.* 10(23):8395-8404.
- Fife KM, Colman MH, Stevens GN, et al. 2004. Determinants of outcome in melanoma patients with cerebral metastases. *Journal of Clinical Oncology* 22(7): 1,293–300.
- Francis V, Sehji T, Barnett M, et al. 2021. Radiological imaging of melanoma: a review to guide clinical practice in New Zealand. *N Z Med J* 134(1528): 79 87.
- Freeman M, Laks S. 2019. Surveillance imaging for metastasis in high-risk melanoma: importance in individualized patient care and survivorship. *Melanoma Management* 6(1): MMT13.
- Garbe C, Amaral T, Peris K et al. 2025. European consensus-based interdisciplinary guideline for melanoma. Part 1: Diagnostics Update 2024. Eur J Cancer.17;215:115152. Epub 2024 Nov 28.
- Haydu LE, Lo SN, McQuade JL et al. 2020. Cumulative Incidence and Predictors of CNS Metastasis for Patients With American Joint Committee on Cancer 8th Edition Stage III Melanoma. *J Clin Oncol.* 1;38(13):1429-1441. Epub 2020 Jan 28.
- Holtkamp LH, Read RL, Emmett L, et al. 2017. Futility of imaging to stage melanoma patients with a positive sentinel lymph node. *Melanoma Research* 27(5): 457–62.
- Ibrahim AM, Le May M, Bossé D, et al. 2020. Imaging Intensity and Survival Outcomes in High-Risk Resected Melanoma Treated by Systemic Therapy at Recurrence. Ann Surg Oncol. 27(10):3683-3691.

- Joseph RW, Elassaiss-Schaap J, Kefford R, et al. 2018. Baseline Tumor Size Is an Independent Prognostic Factor for Overall Survival in Patients with Melanoma Treated with Pembrolizumab [published correction appears in Clin Cancer Res. 2018 Dec 1;24(23):6098]. Clin Cancer Res.;24(20):4960-4967.
- Kaste SC. 2011. PET-CT in children: where is it appropriate? Pediatr Radiol. 2011 Sep;41 Suppl 2(0 2):509-13.
- Lee AY, Droppelmann N, Panageas KS, et al. 2017. Patterns and timing of initial relapse in pathologic stage II melanoma patients. *Annals of Surgical Oncology* 24(4): 939–46.
- Leon-Ferre RA, Kottschade LA, Block MS, et al. 2017. Association between the use of surveillance PET/CT and the detection of potentially salvageable occult recurrences among patients with resected high-risk melanoma. *Melanoma Research* 27(4): 335–41.
- Lewin J, Sayers L, Kee D, et al. 2018. Surveillance imaging with FDG-PET/CT in the post-operative follow-up of stage 3 melanoma. *Annals of Oncology* 29(7): 1,569–74.
- Lim KHJ, Spain L, Barker C, et al. 2018. Contemporary outcomes from the use of regular imaging to detect relapse in high-risk cutaneous melanoma. ESMO Open 2018;3:e000317.
- Melanoma Focus. 2023. Melanoma Focus 2022 Consensus Statement on Imaging FU for cutaneous melanoma surveillance. https://melanomafocus.org/wpcontent/uploads/2022/09/Melanoma-Focus-2022-Consensus-Statement-on-Imaging-FU-forcutaneous-melanoma-surveillance_final-web-copy.pdf.
- National Collaborating Centre for Cancer. 2015. Melanoma: Assessment and management. NICE guideline NG14. Cardiff: National Collaborating Centre for Cancer. URL: https://www.nice.org.uk/guidance/ng14.
- NCCN. 2025. Clinical Practice Guidelines in Oncology (NCCN Guidelines). Pennsylvania: National Comprehensive Cancer Network (NCCN). URL: www.nccn.org/professionals/physician_gls/default.aspx
- Park TS, Phan GQ, Yang JC, et al. 2017. Routine Computer Tomography Imaging for the Detection of Recurrences in High-Risk Melanoma Patients. *Ann Surg Oncol*. 24(4):947-951. Podlipnik S, Carrera C, Sánchez M, et al. 2016. Performance of diagnostic tests in an intensive follow-up protocol for patients with American Joint Committee on Cancer (AJCC) stage IIB, IIC, and III localized primary melanoma: a prospective cohort study. *Journal of the American Academy of Dermatology* 75(3): 516–24.
- Podlipnik S, Moreno-Ramírez D, Carrera C, et al. 2019. Cost-effectiveness analysis of imaging strategy for an intensive follow-up of patients with American Joint Committee on Cancer stage IIB, IIC and III malignant melanoma. *Br J Dermatol*. 2019;180(5):1190-1197.
- Samlowski WE, Moon J, Witter M, et al. 2017. High frequency of brain metastases after adjuvant therapy for high-risk melanoma. *Cancer Medicine* 6(11): 2,576–85.
- Scheier B, Lao CD, Kidwell KM, et al. 2015. Utility of pre-operative PET/CT staging in sentinel lymph node-positive melanoma. *Journal of Clinical Oncology* 33(15): 6,566.
- Schüle S-C, Eigentler TK, Garbe C, et al. 2016. Influence of 18 F-FDG PET/CT on therapy management in patients with stage III/IV malignant melanoma. European Journal of Nuclear Medicine and Molecular Imaging 43(3): 482–8.
- Turner, R.M., Dieng, M., Khanna, N. et al. 2021. Performance of Long-Term CT and PET/CT Surveillance for Detection of Distant Recurrence in Patients with Resected Stage IIIA–D Melanoma. Ann Surg Oncol 28, 4561–4569.

- Xing Y, Bronstein Y, Ross MI, et al. 2011. Contemporary diagnostic imaging modalities for the staging and surveillance of melanoma patients: a meta-analysis. *Journal of the National Cancer Institute* 103(2): 129–42.
- Yan MK, Adler NR, Wolfe R, et al.2023. The role of surveillance imaging for resected high-risk melanoma. *Asia Pac J Clin Oncol*. 19(4):566-573. Zakrzewski J, Geraghty LN, Rose AE, et al. 2011. Clinical variables and primary tumor characteristics predictive of the development of melanoma brain metastases and post-brain metastases survival. *Cancer* 117(8): 1,711–20.

6.4: Ultrasound imaging of draining node basins

Description	US imaging of the draining node basin(s) can be considered in a select group of patients, in conjunction with routine clinical follow-up \pm cross-sectional imaging as per TNM stage.
Rationale	These recommendations are made accepting that individual centre's resources and protocols may differ but should be considered as best practice. US of the draining regional lymph node basins may provide a useful adjunct to clinical examination, particularly when clinical examination is limited (such as in obese patients), when SNB has failed or not performed when indicated, or as surveillance of SNB-positive node basins when completion lymphadenectomy is not performed. Following the results of the MSLT-II trial, nodal surveillance with US is likely to increase (Faries et al 2017). There is evidence that US can detect lymph node metastasis with a reasonable degree of accuracy, with literature to support increased sensitivity of US compared with clinical examination (Bafounta et al 2004; Machet et al 2005, Sibone et al 2007; Pilko et al 2012; Rossi et al 2003). The success of sonographic nodal assessment relies on the expertise of the sonographer, requiring a high level of technical skill and knowledge.
Good practice points	 6.4.1 US imaging of the node basin(s) should be performed in a select group of patients, in conjunction with routine clinical examination and appropriate cross-sectional imaging surveillance based on TNM stage: patients with stage IB, stage IIA, B or C where SNB is not performed when clinically indicated patients with SNB-positive stage III disease where completion lymphadenectomy is not performed patients in whom SNB failed considered for patients where clinical examination is difficult (for example, obesity). See Appendix 6 for example follow up schedule. 6.4.2 Recommended frequency of US imaging is 4–6 monthly for 2 years. For those patients undergoing US surveillance who have not had SNB, baseline US is also advised. 6.4.3 There may be more than one draining node basin. For primary tumours in the head and neck, bilateral neck US is advised. In the torso this would be bilateral axilla, neck, inguinal and iliac basins so cross sectional imaging may be more practical with CT neck, chest, abdomen, pelvis

References

• Bafounta M-L, Beauchet A, Chagnon S, et al. 2004. Ultrasonography or palpation for detection of melanoma nodal invasion: a meta-analysis. *Lancet Oncol* 5(11): 673–80.

down to the upper thigh.

FNA biopsy.

6.4.4 Equivocal sonographic findings may need short-interval follow-up US or

- Faries MB, Thompson JF, Cochran AJ, et al. 2017. Completion dissection or observation for sentinel-Node metastasis in melanoma. *New England Journal of Medicine* 376(23): 2,211–22.
- Francis V, Sehji T, Barnett M, et al. 2021. Radiological imaging of melanoma: a review to guide clinical practice in New Zealand. *N Z Med J* 134(1528): 79 87.
- Machet L, Nemeth-Normand F, Giraudeau B, et al. 2005. Is ultrasound lymph node examination superior to clinical examination in melanoma follow-up? A monocentre cohort study of 373 patients. *British Journal of Dermatology* 152(1): 66–70.
- Pilko G, Zgajnar J, Music M, Hocevar M. 2012. Lower tumour burden and better overall survival in melanoma patients with regional lymph node metastases and negative preoperative ultrasound. *Radiol Oncol.* Mar;46(1):60-8.
- Rossi CR, Mocellin S, Scagnet B, et al. 2003. The role of preoperative ultrasound scan in detecting lymph node metastasis before sentinel node biopsy in melanoma patients. *J Surg Oncol*. 2003;83:80–4.
- Sibon C, Chagnon S, Tchakerian A, et al. 2007. The contribution of high-resolution ultrasonography in preoperatively detecting sentinel-node metastases in melanoma patients. *Melanoma Res.* 17:233–7.

CLINICAL GUIDELINE 7: Supportive care

7.1: Supportive care

Description

Patients with melanoma and their families/whānau have equitable and coordinated access to appropriate medical, allied health and supportive care services, in accordance with *Guidance for Improving Supportive Care for Adults with Cancer in New Zealand* (Ministry of Health 2010) and informed by Te Aho o Te Kahu – Cancer Control Agency's Cancer Action Plan 2023 – 2025.

Rationale

The psychological, social, physical and spiritual needs of cancer patients are many and varied. These needs can to a large extent be met by allied health care teams in hospitals and in the community. Adults with cancer enjoy improved quality of life following needs assessment and provision of supportive care.

Non-government organisations, including the Cancer Society and Melanoma New Zealand, perform an important role in providing supportive care. Supportive care should be grounded in principles of equity, person-centred care and cultural safety, particularly for Māori and Pacific peoples who experience worse outcomes.

Good practice points

- 7.1.1 Patients have their supportive care and psychosocial needs assessed using validated tools (such as the 'Distress Thermometer', Patient Health Questionnaire (PHQ-9), Kessler Psychological Distress Scale (K-10), Generalised Anxiety Disorder (GAD-7), or a cancer-related distress self-assessment tool) and documented at each stage of their cancer journey and have access to services appropriate to their needs. Screening should be accompanied by clinical judgement, cultural safety principles and (where relevant) whānau engagement.
- 7.1.2 Information in a language and format appropriate to the patient is offered to each new patient with cancer, and meets the guidelines set out in *Rauemi Atawhai: A guide to developing health education resources in New Zealand* (Ministry of Health 2012). This also aligns with the principles outlined in Whakamaua: Māori Health Action Plan 2020–2025 and Te Whatu Ora's updated health literacy guidance.
- 7.1.3 Patients have access to mental health services appropriate to their needs. Those experiencing significant distress or disturbance are referred to appropriate specialist health practitioners. Use of culturally safe services and integration with primary mental health and wellbeing support is encouraged.
- 7.1.4 Māori patients and their family/whānau are offered access to Whānau Ora assessments and cultural support services. This includes access to Kaupapa Māori providers, Māori cancer navigators and/or kaiārahi.

Good practice points (continued)

- 7.1.5 Māori patients and those from other cultural groups and their family/whānau are offered access to culturally appropriate cancer support services. This includes support through Pacific health services, ethnic-specific organisations, and cultural navigators where available. Cultural assessments should be embedded early in the care pathway and not treated as add-ons.
- 7.1.6 Individually tailored written information in a plain language format is offered to each new patient with melanoma, and cover:
 - general background information about melanoma.
 - treatment options: specific local arrangements, including information about the MDT and support services, and whom the patient should contact if necessary.
 - local self-help/support groups and other appropriate organisations. Information should be available in multiple formats, including digital, to suit the patient's preference and level of literacy.
- 7.1.7 Health professionals ensure that patients understand the information provided or refer them on to suitably qualified service providers/advisors who can interpret information for them. This includes access to interpreter services (in-person, phone or digital) and communication support tools.
- 7.1.8 Patients are provided with adequate support and information to make decisions about their future health care in consultation with health care providers and family/whānau. Shared decision-making principles should be followed, and patients should be supported to participate in advanced care planning discussions where appropriate.
- 7.1.9 Patients are supported through survivorship with access to rehabilitation, psycho-oncology, peer support, return to work guidance, and appropriate long-term surveillance. Survivorship care planning should be integrated early and reflect individual needs, preferences and whānau involvement.

References

- Best Practice Advocacy Centre New Zealand (BPAC NZ). 2009. Assessment of depression in adults in primary care.
- Cancer Society, Central Cancer Network, Cancer Nurses College. 2018. Cancer Survivorship Consensus Statement. Wellington: Cancer Society. URL: https://www.cancer.org.nz/assets/Uploads/Survivorship-Consensus-Statement.pdf
- Ministry of Health. 2010. Guidance for Improving Supportive Care for Adults with Cancer in New Zealand. Wellington: Ministry of Health. URL: https://www.health.govt.nz/system/files/documents/publications/supp-care-guidance-mar2010.pdf
- Ministry of Health. 2012. Rauemi Atawhai: A guide to developing health education resources in New Zealand. Wellington: Ministry of Health. URL: https://www.health.govt.nz/system/files/documents/publications/rauemiatawhai4web.pdf
- Ministry of Health. 2020. Whakamaua: Māori Health Action Plan 2020–2025. Wellington: Ministry of Health.
- Te Aho o Te Kahu. 2023. Cancer Action Plan 2023–2025. Wellington: Ministry of Health. URL: https://teaho.govt.nz/reports/canceractionplan

• Te Aho o Te Kahu. 2023. Survivorship Pathway and Resources. URL: https://teaho.govt.nz

CLINICAL GUIDELINE 8: Care coordination

8.1: Care coordination

Description

Patients managed by a melanoma MDT have access to a CNS, CNC or other health professional who is a member of the MDM to help coordinate all aspects of their care.

Each treatment centre has a melanoma clinical lead to provide necessary leadership, guidance and provision of melanoma care.

Rationale

The cancer journey is complex; it is not uncommon for a patient to be seen by many specialists and across the public and private sectors.

'Care coordination' refers to a system or a role primarily intended to expedite patient access to services and resources, improve communication and the transfer of information between services, address patients' information needs and improve continuity of care throughout the cancer continuum.

Key responsibilities of care coordinators include:

- early identification and assessment of patients at greatest need of support to enable timely and appropriate care.
- care coordination, including managing and aligning appointments and investigations to reduce patient burden and improve access.
- provision of clear, culturally appropriate information and holistic nursing care that supports understanding of diagnosis and treatment.
- provision of advice/education to other nurses and health professionals.
- ensuring best-practice service provision through evidence-informed approaches and ongoing quality improvement.
- collaboration with other health professionals to improve patient outcomes and support integrated care pathways.
- acting as the central communication link between patients, their whānau and healthcare providers to ensure clear, co-ordinated care.
- offering emotional, psychosocial, and survivorship support throughout the patient journey.
- facilitating smooth transitions between services (e.g. oncology, palliative care, primary care) to maintain continuity of care.
- connecting patients with Māori, Pacific, and other culturally aligned services and supports to ensure equity and cultural safety.
- identifying opportunities to streamline processes and address inequities within the cancer care pathway.

Given the specialist knowledge required and responsibilities involved, care coordinators should be a health professional with special interest in melanoma.

Good practice points

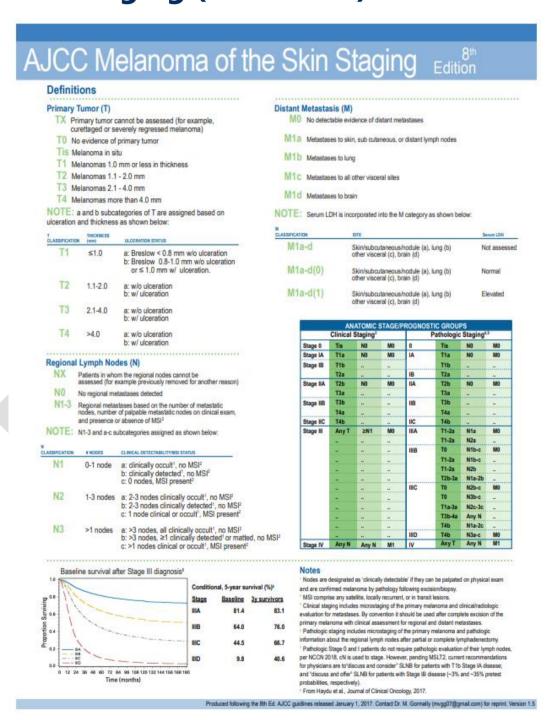
- 8.1.1 All patients with melanoma have a nominated single point of contact ideally a nurse with an in-depth/specialist knowledge of melanoma to support them to access psychosocial support and information, help them self-manage their disease and provide coordination of their cancer journey e.g., coupling radiology investigations or outpatient visits together.
- 8.1.2 Services provide all patients with this person's name and contact details, and the care coordinator makes initial contact with the patient within seven days of the initial diagnosis.
- 8.1.3 Culturally responsive models and tools such as Whānau Ora, Te Whare Tapa Whā, and the Meihana Model should be used to assess needs, inform care planning, and guide connection with culturally appropriate services
- 8.1.4 Digital solutions (e.g. shared care plans, electronic MDT notes, secure messaging, and documentation of Advance Care Plans) should be used where possible to support real-time communication and continuity of care between the care coordinator, primary care specialists and the patient/ whānau.
- 8.1.5 When care transitions to another sector (e.g. oncology, palliative care or primary care), the care coordinator ensures a clear handover to the next key contact. Patients should be informed about who their new contact is and how to reach them.

References

- Ministry of Health. 2015. Evaluation of the Cancer Nurse Coordinators Initiative. Wellington: Ministry of Health.
- Ministry of Health. 2020. Whakamaua: Māori Health Action Plan 2020–2025. Wellington: Ministry of Health.
- Te Aho o Te Kahu. 2023. Cancer Action Plan 2023–2025. Wellington: Ministry of Health. URL: https://teaho.govt.nz/reports/canceractionplan
- Te Whatu Ora. 2022. Te Pae Tata New Zealand Health Plan 2022. Wellington. Te Whatu Ora.

Glossary of terms

Term	Description
AAD	American Academy of Dermatology
ABCDEFG rule	A rule to recognise the early signs of melanoma: Asymmetry: the spot is not symmetrical like a normal mole or freckle Border: the spot has a blurry or jagged edge Colour: the spot has more than one colour or changes colour Different: the spot is larger than 6 mm diameter or different from the rest of your skin lesions (ugly duckling) Elevated: the spot is raised with an uneven surface Firm: feels firm to touch
	Growing: over weeks/months
Adjuvant therapy	Additional treatment in the form of radiotherapy or medications
AJCC	American Joint Committee on Cancer
Biopsy	Removal of tissue to be looked at under a microscope to help in the diagnosis of a disease
BRAF	An oncogene that encodes for the production of a protein called B-Raf, which is involved in signal transduction and regulation of cell division.
Breslow thickness	The single most important prognostic factor for clinically localised primary melanoma. The deeper the melanoma has grown, the more likely it is that some cells have spread through the blood stream or lymphatic system. Breslow thickness or 'depth' is measured from the top of the granular layer of the epidermis (or, if the surface is ulcerated, from the base of the ulcer) to the deepest invasive cell across the broad base of the tumour (dermal/subcutaneous) as described by pathologist Alexander Breslow.
CAP	College of American Pathologists
CGH	Comparative genomic hybridisation
Chemotherapy	Treatment with cytotoxic drugs
CLND	Complete lymph node dissection
CMN	Congenital melanocytic naevi
CNC	Cancer Nurse Coordinator
CNS	Clinical Nurse Specialist
СТ	Computed tomography
Dermatoscopy	Examination of skin lesions via an incident light magnification system, using immersion oil on the skin surface or a polarised lens so the epidermis appears translucent
Desmoplastic melanoma	Malignant melanocytic tumour with fibroblastic proliferation appearing as an enlarging scar-like plaque
Diagnosis	The process of identifying a disease, such as a cancer, from its signs and symptoms


Term	Description
DNA	Deoxyribonucleic acid (the molecule that carries the genetic instructions for the development, functioning, growth and reproduction of all living things) or
	did not attend (an appointment)
Excisional biopsy	A biopsy where the entire piece of affected tissue is removed for pathological examination
FAMMM	Familial atypical multiple mole melanoma
FCT	Faster cancer treatment
FISH	Fluorescence in-situ hybridisation, the use of DNA sequences linked to a fluorescent marker, which acts as a probe to bind to specific DNA sequences on intact chromosomes
FNA	Fine-needle aspiration
FSA	First specialist assessment
GEP	Gene expression profile
GP	General practitioner
GPEP	General practice education programme
Health care professional	Generic term that includes doctors, nurses and allied health workers.
Histology	The study of the structure, composition and function of tissues and cells under a microscope
Ilioinguinal	Pertaining to the pelvis and groin regions
Incisional biopsy	A biopsy where only part of the affected tissue is removed
Isolated limb infusion (ILI)	A form of regional chemotherapy for recurrent disease that is confined to a limb
Langer's lines	Any one of a number of linear striations in the skin that delineate the general structural pattern, direction and tension of the subcutaneous fibrous tissue
Lesion	An area of abnormal tissue
Lymph node dissection	Surgical removal of a lymph node(s). Also called lymphadenectomy.
Lymph nodes	Small oval-shaped structures found in clusters throughout the lymphatic system. They form part of the immune system and are also known as lymph glands.
Lymphadenopathy	Disease or swelling of the lymph nodes
Lymphoscintigraphy	A nuclear-medicine-based diagnostic technique using scintillation scanning of technetium-99m antimony trisulphide colloid
Magnetic resonance imaging (MRI)	A radiological technique used to form pictures of the anatomy and the physiological processes of the body
MDM	Multidisciplinary meeting. A forum for health professionals with expertise in diagnosing and managing specific cancers to collectively review pertinent clinical information and make timely decisions regarding the recommended optimal treatment and care of individual patients at identified points in their cancer journey.

Term	Description
Melanoma	Any of a group of malignant neoplasms that originate in the skin and are composed of melanocytes (skin cells that are capable of producing melanin)
MELFO	MELanoma FOllow-up study, an international phase 3 randomised trial investigating the effects of a reduced stage-adjusted follow-up schedule for Stage IB-IIC cutaneous melanoma patients
MEK	Mitogen-activated extracellular signal-regulated kinase
Metastases	Also known as 'secondaries'; tumours or masses of cells that develop when cancer cells break away from the original (primary) cancer and are carried by the lymphatic and blood systems to other parts of the body
Metastasis	The spread of cancer from the primary site (place where it started) to other places in the body via the blood stream or the lymphatic system
MIA	Melanoma Institute Australia
Microstaging	A technique used to determine the stage of melanoma and certain squamous cell cancers
MIS	Melanoma in situ
MMS	Mohs micrographic surgery
Naevus/Naevi	A medical term for moles. There are several types, including 'common,' which is harmless, and 'dysplastic,' which is atypical and may increase the risk of melanoma.
NCCN	National Comprehensive Cancer Network, a non-profit alliance of more than 30 leading cancer centres in the United States dedicated to improving cancer care.
New Zealand Cancer Registry (NZCR)	A population-based register of all primary malignant diseases diagnosed in New Zealand, excluding squamous and basal cell skin cancers
NRAS	An oncogene that encodes for the production of a protein called N-Ras, which is involved in the regulation of cell division.
Positron emission tomography/ computed tomography (PET-CT)	A specialised imaging technique that demonstrates uptake of 18FDG in areas of high cell metabolism and can help differentiate between benign and malignant masses
PPE	Personal protective equipment, anything that is used or worn by a person (including clothing) to minimise risks to the person's health and safety
Radiotherapy	Treatment using high-energy X-rays to destroy cancer cells
RCPA	The Royal College of Pathologists of Australasia
RCT	Randomised controlled trial
RFS	Recurrence-free survival
SCAN rule	An alternative to the ABCDEFG rule to identify early signs of melanoma: Sore Changing Abnormal New

Term	Description
SDELM	Sequential digital epiluminescent microscopy: the capture and assessment of successive macroscopic and dermatoscopic images
Sentinel node biopsy (SNB)	A procedure in which the sentinel lymph node is removed and examined histologically under a microscope to determine whether cancer cells are present
Skin lesions	Part of the skin that has abnormal growth or appearance compared with the skin around it
SLNB	Sentinel lymph node biopsy
SPECT	Single-proton emission computed tomography (also known as SPET)
SPF	Sun protection factor, a standard used to measure the effectiveness of sunscreens
Stage	A way of describing the size of a cancer and how far it has grown. Staging is important because it helps determine the treatments that are required
Te Aho o Te Kahu, Cancer Control Agency	A government agency created in recognition of the impact cancer has on the lives of New Zealanders. It is charged with leading and uniting efforts to deliver better cancer outcomes for Aotearoa New Zealand. Te Aho o Te Kahu is guided by the goals and outcomes in the National Cancer Action Plan 2019-2029.
Te Whatu Ora – Health New Zealand	The organisation responsible for ensuring all publicly funded health and disability services, including hospital and specialist services and primary and community care, are provided to all New Zealanders.
TNM staging	The most widely used cancer staging system and the global standard used to record the anatomical extent of disease. In the TNM system, each cancer is assigned a letter or number to describe the tumour, node and metastases. Trefers to the size and extent of the original (primary) tumour Nrefers to the number of nearby lymph nodes that have cancer
	M refers to whether the cancer has metastasised (spread from the primary tumour to other parts of the body).
Tumour	An abnormal mass of tissue that results when cells divide more than they should or do not die when they should. Tumours may be benign (not cancer) or malignant (cancer).
UPF	Ultraviolet protection factor, a standard used to measure the effectiveness of sun protective fabrics
US	Ultrasound
UVI	UV Index. The measure of the intensity of UVR
UVR	Ultraviolet radiation

Appendices

Appendix 1: AJCC Melanoma of the skin staging (8th edition)

Reference

- Gormally M, Medical Oncologist, Memorial Sloan Kettering Cancer Center, New York, United States of America. Melanoma Staging 8th edition Poster. Provided by email 1 August 2023.
- American Joint Committee on Cancer. 2017. AJCC Cancer Staging Manual 8th edition. New York, Springer New York.

Appendix 2: Te Whatu Ora Counties Manukau: Skin histology request form

KIN HISTOP	ATHOLOGY	
Sample Date:	Time:	Copies to:
Taken by:		Red and
CLINICAL INFORMATIO	ON: (Diagnosis, clinical course,	immunosuppression, etc)
Prior pathology		CLINICAL PRIORITY
Biohazard risk (ie: known HIV, Hepatitis etc)		 Malignant melanoma, Merkel cell or other aggressive skin malignancy, biopsy proven or high clinical suspicion
		 Melanoma in situ, T2 SCC. Tumour greater than 2cm in greatest dimension or tumour any size with 2 or more high risk features
		Immunosuppressed patient with invasive SCC
		 Other SCC / higher risk BCC (e.g. on T-zone on face. ears, recurrent, incomplete excision, infiltrative or morpheic
		Excision biopsy for a low-risk malignancy or benign lesion (i.e. not clinically aggressive skin malignancy
SPECIMENS (site, desc	ription, orientation) See over	above, and not high-risk SCC or BCC) is NOT an urgent case
	ription, orientation) See over	above, and not high-risk SCC or BCC) is NOT an urgent case
	ription, orientation) See over	above, and not high-risk SCC or BCC) is NOT an urgent case
	ription, orientation) See over	above, and not high-risk SCC or BCC) is NOT an urgent case
	ription, orientation) See over	above, and not high-risk SCC or BCC) is NOT an urgent case
CLINICAL QUESTION	ription, orientation) See over	above, and not high-risk SCC or BCC) is NOT an urgent case r page for full body image
CLINICAL QUESTION		above, and not high-risk SCC or BCC) is NOT an urgent case r page for full body image

COUNTIES MANUKAU HEALTH	Affix patient identification label here Surname: Male Female First Name: DOB:/ NHI:
	2)(

(Courtesy of Counties Manukau District Health Board).

Appendix 3: RCPA Primary cutaneous melanoma structured reporting protocol 3rd edition

		ve Melar		2022)
	Structured Reporting			
PROTOCOL SCOPE	Includes the International Collaborati Royal College of Pathologists of			
S1.01 DEMOGRAPH		(***	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Family name	Given name(s)			S1.02 ACCESSION NUMBER
Date of birth	Patient address			Date of request
DD - MM - Y	YYY			DD - MM - YYYY
Sov	Ethnicity		S1.03 PRINCIPA	L CLINICIAN
Sex Male	Unknown			
Female	Aboriginal/Torres Strait Isla	ander (AU)	G1.01 COPY TO D	DOCTORS
Intersex/indeter	~ ' ' '			
Requesting doctor - n	Other ethnicity: ame and contact details		Patient health iden	otifiers (e.g. MPN THI or NHI)
Tiequeening decien in			Patient health idei	ntifiers (e.g. MRN, IHI or NHI)
Mandatory fields (standard	ds) are in bold (e.g., S1.03 ACCESSION NU	IMBER).		
	are in grey (e.g., G1.01 COPY TO DOCTO		Indicate	es multi-select Indicates single select
Clinical informat	tion	S1.07 S	PECIMEN(S) SUBMI	ITTED CONT.
S1.04 CLINICAL INF	ORMATION (If provided on request for	m)	h nodes	
			ot submitted	
		-	ubmitted, specify site	(s)
		* *		
] '		
OR	not provided			
			SPECIMEN ORIENTA information received i	TION from the clinician on orientation of
S1.05 TUMOUR SITE		_		res, clips or other techniques)
Not specified Specify			lot specified Specify, if known	
Specify		ן "ור		
		┚│└		
(Per information re	ceived from the clinician)			
O Not specified		Macro	scopic informat	ion
	lete diagnostic biopsy plete (partial) diagnostic biopsy			MARY LESION DESCRIPTION
O Wide excision	proce (partial) alagnostic biopsy	as s	hape, colour, border,	sion includes includes such features contour, evidence of surface crusting
		oru	Iceration and proximit	ty to resection margins)
S1.06 SPECIMEN LAT	TERALITY			
O Not specified O Left O N	Aidline O Right	_		
0.	O rigin	G2.02 N	MACROSCOPIC PRIM	MARY LESION DIMENSIONS
S1.07 SPECIMEN(S)	SUBMITTED			
O Not specified			th mm × width m	im a depth mm
O Punch technique O Shave technique		O 1	ndeterminate (No	te: Depth is optional)
~	coop/deep shave technique			
Curette		S2.01 N	ACROSCOPIC SATE	LLITE LESIONS
	cal/disc (full-thickness)		plicable to invasive tu	
Other, specify			ot identified	O Indeterminate
] O	resent	

G2.03 OTHER LESION(S)	S3.03 ULCERATION
○ Not identified	O Not identified O Indeterminate
Present	
Macroscopic description of other lesion(s)	O Present
The description of serial residing	ļ —
	G3.02 EXTENT OF ULCERATION mm
G2.04 NATURE AND SITE OF ALL BLOCKS	
GEIGH HATORE AND STILL OF ALL DEGERG	53.04 MITOTIC COUNT
	/mm² O Indeterminate
G2.05 OTHER MACROSCOPIC COMMENTS	
GZ.US OTHER MACROSCOPIC COMMENTS	S3.05 MICROSATELLITES
	Not identified Indeterminate
	O Present
	1
	S3.06 MICROSATELLITES: MARGINS
	Cannot be assessed
Microscopic information	Not involved by microsatellite
G3.01 MELANOMA SUBTYPE (select all that apply)	O Involved by microsatellite
(Value list modified from the World Health Organization	O involved by fine oddicine
Classification of Skin Tumours (2023))	
Low-CSD melanoma (superficial spreading melanoma)	S3.07 LYMPHOVASCULAR INVASION
	O Not identified O Indeterminate
Lentigo maligna melanoma (high-CSD melanoma)	O Present
Desmoplastic melanoma	O Present
Malignant Spitz tumour (Spitz melanoma)	
Acral melanoma	G3.03 TUMOUR-INFILTRATING LYMPHOCYTES
Mucosal melanomas (genital, oral, sinonasal)	
Melanoma arising in blue naevus	O Not identified
 Melanoma arising in giant congenital naevus 	O Brisk
☐ Nodular melanoma	O Non brisk
☐ Naevoid melanoma	
☐ Melanoma, not otherwise classified	CO OA TUMOUD DECDESSTON
Other, specify	G3.04 TUMOUR REGRESSION
*	Not identified Indeterminate
	O Present
	1
	G3.05 TUMOUR REGRESSION: MARGINS
S3.01 SURGICAL MARGIN/TISSUE EDGES	Cannot be assessed
Cannot be assessed	
Not involved by melanoma in situ or invasive melanoma	Not involved by regression
Distance of melanoma	O Involved by regression
in situ or invasive tumour	
from closest margin	S3.08 NEUROTROPISM/PERINEURAL INVASION
Specify closest	
location(s), if possible	O Not identified O Indeterminate
	O Present
☐ Involved by melanoma in situ	
Specify location(s),	CO DO DECHODI ACTTO MEI ANOMA COMPONENT
if possible	S3.09 DESMOPLASTIC MELANOMA COMPONENT
	O Not identified
Involved by invasive melanoma	Present
Specify location(s),	Pure (>90% desmoplastic melanoma)
if possible	Mixed desmoplastic/non-desmoplastic melanoma
S3.02 BRESLOW THICKNESS	G3.06 ASSOCIATED MELANOCYTIC LESION
(Measurement should be to the nearest 0.1 mm as per	Not identified
AJCC staging)	O Present, describe
- " 0	W
Specify O Indeterminate	
At least 🕩	

S3.10 LYMPH NODES STATUS (Required only if lymph nodes submitted)	Ancillary studies
Sentinel lymph nodes	G4.01 ANCILLARY FINDINGS
Number of sentinel nodes examined	BRAF testing
Number of positive sentinel nodes (i.e., clinically occult)	Not performed Performed
Number cannot be determined	Record results and methodology
Extranodal extension ^a	Other testing, specify if performed
Maximum dimension of largest mm metastasis in sentinel node*	Test Result
Location of largest sentinel node metastases Subcapsular Intraparenchymal Both subcapsular and intraparenchymal	
Non-sentinel lymph nodes	Pathological staging information
Number of non-sentinel nodes examined	PATHOLOGICAL STAGING (UICC/AJCC TNM 8th edition)
Number of positive non-sentinel nodes (i.e., clinically occult)	TNM Descriptors (only if applicable) (select all that apply) m - multiple primary tumours r - recurrent
Number cannot be determined	y - post-therapy
Extranodal extension*	sn - sentinel node biopsy S5.01 Primary tumour (pT)
Maximum dimension of largest metastasis in a non-sentinel node ^a mm	S5.02 Regional lymph nodes (pN)
Clinically apparent lymph nodes	
Number of non-sentinel nodes examined	
Number of positive non-sentinel nodes	Year and edition of staging system
Number cannot be determined	
Extranodal extension* Not identified Present Indeterminate	Diagnostic overview
Maximum dimension of largest metastasis in a non-sentinel node mm **Required only in the presence of positive nodes.**	G6.01 DIAGNOSTIC SUMMARY Include: Tumour site, Specimen laterality, Specimen(s) submitted, Surgical margin/tissue edges, Melanoma subtye, Pathological staging
	and year/edition of staging system.
G3.07 OTHER MICROSCOPIC COMMENTS	
	G6.02 OVERARCHING COMMENT

Note: The above protocol is the most recent version available as of the time of publication. The most up to date version of the reporting protocol should always be used.

Available from: https://www.rcpa.edu.au/Library/Practising-Pathology/Structured-Pathology-Reporting-of-Cancer/Cancer-Protocols

Appendix 4: Melanoma Institute Australia: sentinel node biopsy reporting template

No. of sentinel lymph nodes received: _

No. of nodes containing metastatic melanoma:

For each involved lymph node:

Site:

No. of tumour foci:

Intranodal compartment(s) involved by tumour: Subcapsular_parenchymal (or both)

Size of largest discrete deposit: _mm

Maximum tumour penetrative depth: mm

Cross-sectional area of SN involved by tumour: %

Perinodal lymphatic invasion: Present_Absent

Extranodal spread: Present_Absent Nodal nevus cells: Present Absent

Ancillary tests: Immunohistochemistry (BRAF VE1) (_positive/negative/equivocal)

_Molecular testing (pending)/ _Insufficient material for testing.

(Courtesy of Professor Richard Scolyer, Dr Louise Jackett and Dr Robert Rawson)

Appendix 5: Example table for melanoma staging

Stage	Investigation when clinically appropriate	
Melanoma In Situ	NI/A	
IA	N/A	
IB, IIA	Sentinel node biopsy considered	
IIB	CT Head, Chest, Abdo, Pelvis Sentinel node biopsy if above negative	
IIC	CTPET MRI Brain Sentinel node biopsy if above negative	
IIIA	If adjuvant therapy or_completion lymphadenectomy is planned baseline PET-CT	
IIIB, IIIC, IIID	CTPET MRI Brain	
IV	CT Chest, Abdo, Pelvis +/- Neck CTPET if CT scan is indeterminate or if only resectable disease found on CT and the patient is suitable for treatment MRI brain if CT head not already performed	

The MIA sentinel node risk calculator should be used to guide selection for sentinel node biopsy in patients with stage IB disease and above. If <5%, SNB is not recommended. When 5-10% risk, SNB should be considered. At a risk of >10% SNB is recommended.

Appendix 6: Example melanoma follow-up schedule

Stage	Clinical Follow Up	Radiology
Melanoma In Situ IA	12 monthly GP review for ten years	
IB, IIA (-ve SNB)	Initial post op review SOPC 6 monthly GP review first two years 12 monthly GP review until year ten	N/A
IB , IIA (no SNB)	6 monthly SOPC review first two years 12 monthly GP review until year ten	If no SNB and clinically appropriate USS nodal basin 6 monthly for two years (CT instead if on torso)
IIB (no SNB)	4 monthly review first two years (SOPC/GP) 6 monthly review third year (SOPC/GP) 12 monthly GP review until year ten	If no SNB and clinically appropriate USS nodal basin 6 monthly for two years (CT instead if on torso)
IIIA (+ve SNB)	4 monthly review first two years (SOPC/GP) 6 monthly review third year (SOPC/GP) 12 monthly GP review until year ten	No completion dissection: Alternate USS nodal basin with CT chest, abdomen, pelvis 6 monthly for three years Completion node dissection: CT chest, abdomen, pelvis 6 monthly for one year then annual to three years
IIC IIIB, C, D IV resected	4 monthly review first two years (SOPC/GP) 6 monthly review third year (SOPC/GP) 12 monthly GP review until year ten	CT chest, abdomen, pelvis and brain MRI at three months then 6 monthly for three years then annual for year four and five
IV un-resected	Tailored as indicated by treatment/symptoms/MDT	
Guide	SOPC = Surgical Out-Patient Clinic (Hospital) GP = General Practitioner (Family Doctor)	

Follow up should include:

- Examination of the primary site and nodal basins along with the lymphatic route
- Annual whole body skin surveillance
- Order appropriate next investigations if still clinically appropriate
- Give sun protection advice, consider Vitamin D supplementation

Appendix 7: National Melanoma Working Group members

The National Melanoma Cancer Working Group (4th edition) comprised:

Chair

Dr Susan Seifried, General Surgeon, Te Whatu Ora Nelson Marlborough

Members

Abbie Cameron, Registered Nurse, Melanoma New Zealand

Dr AJ Seine, Dermatologist, Skin Centre Tauranga

Dr Alistair Brown, Dermatologist and Mohs Surgeon, Skin Centre Tauranga

Dr Annie Wong, Medical Oncologist, Te Whatu Ora Capital, Coast and Hutt Valley

Dr Bronwen McNoe, Senior Research Fellow Preventative and Social Medicine, University of Otago

Dr Catherine Bennett, Medical Oncologist, Te Whatu Ora Auckland

Dr Chris Boberg, General Practitioner, Skin Check

Dr Danielle Vignati, Dermatopathologist, Middlemore Hospital

Dr Dirk Venter, General Practitioner, Venter Medical Ltd

Dr Jeat Lee, Radiation Oncologist, Kathleen Kilgour Centre

Dr Victoria Francis, Radiologist, Te Whatu Ora Waitematā

Mr Dan Butler, Plastic, Reconstructive and Cosmetic Surgeon, Te Whatu Ora Bay of Plenty

Katrina Patterson, Chief Executive Officer, Melanoma Network of New Zealand (MelNet)

Appendix 8: Summary of changes

This section describes the clinical changes made in this edition and the previous one. Minor corrections and editorial changes have not been identified.

Clinical Guideline 1.1: Prevention and early detection of melanoma	 Inclusion of statement that information on referral pathways be made available (Description) Terminology of 'thicker' changed to 'higher stage' (Rationale) Reference to months of the year when UVR protection should be used removed (GPP 1.1.1) Sunscreen SPF rating changed from "at least 30 to 50" to "ideally SPF 50" Additional reference: Boniol (2012) 	
Clinical Guideline 1.3: People at increased risk of melanoma Clinical Guideline 3.1:		
Patient access to trained health care professionals		

Clinical Guideline 3.2: Excision of melanocytic lesions	
Clinical Guideline 3.4: Time to diagnosis	Chapter title changed to "Time to pathological diagnosis" (Title)
Clinical Guideline 3.6: Radiological staging	 Description and good practice points significantly reworked to merge recommendations from description into good practice points Level of risk added as a dependency for radiological staging (Description) Addition of statements addressing oligometastasis, asymptomatic metastases and patient factors/comorbidities (Description). Inclusion of statement about usefulness of PET-CT in establishing a baseline for future surveillance (Rationale) Inclusion of information on NICE guidelines (2022) use of CT imaging for staging of IIB and IIC disease (Rationale) Reference to MIA Stage II prediction tool added (GPP 3.6.3) Additional references: Ravichandran (2020), NICE Guidelines (updated to 2022), Melanoma Institute of Australia (2024)

Clinical Guideline 4.1:	Assessment of patient appropriateness for clinical
Multidisciplinary	trials included in details recorded at MDM (GPP
meetings	4.1.3)
	Additional references: Te Aho o Te Kahu (2021),
	Ministry of Health (2012)
Clinical Guideline 5.1:	Addition of statement on pathological excision
Re-excision of	margins and the need for further re-excision if WLE
histologically confirmed	has residual melanoma (Rationale)
melanomas	Addition of statement on excision of amelanotic and
	desmoplastic melanoma (Rationale)
	Inclusion of information on Moncrieff trial
	(Rationale)
	Additional reference: Moncrieff (2018)
Clinical Guideline 5.3:	Updated reference: NICE guidelines
Sentinel node biopsy	
technique	
Clinical Guideline 5.4:	Reference to NZ retrospective studies and future
Therapeutic/completion	research on surveillance for high risk groups
lymphadenectomy	(Rationale)
	Addition of statement that patients with positive
	sentinel nodes be discussed at MDM and the patient
	made aware of the pros and cons of management
	approaches (Rationale)
	Addition of statement on importance of radiological
	surveillance in observation (Rationale)
	Additional references: Williams (2021, 2023), NICE
	guidelines (updated)
	Garage (alternative)

Clinical Guideline 5.6: Adjuvant therapy	 Chapter title changed to "Adjuvant and neoadjuvant therapy" (Title) Inclusion of neo-adjuvant therapy in description (Description) Neoadjuvant therapy trial data updated (SWOG 1801) (Rationale) Additional references: Patel (2023)
Clinical Guideline 5.7:	Use of intralesional and topical treatments amended
Patients with loco-	to be as a second-line treatment option only (GPP
regionally recurrent,	5.6.1)
locally advanced and	
stage IV melanoma	
Clinical Guideline 6.1:	
Clinical follow-up and	
surveillance	
Clinical Guideline 6.3:	Addition of statements addressing oligometastasis,
Follow-up cross-	asymptomatic metastases and patient factors/co-
sectional imaging	morbidities (Description).
	Description and good practice points significantly
	reworked to merge recommendations from
	description into good practice points
	Data from Bleischer et al 2020 and reference to NICE
	guidelines added (Rationale)
	Research on effectiveness of surveillance CT and
	PET-CT added (Turner, Podlipnik) (Rationale)
	Statement on use of imaging in younger and
	pregnant patients added (Rationale)
	Inclusion of good practice point on use of imaging in
	younger or pregnant patients (GPP 6.3.4)

	Additional references: Bleicher (2020), Ibrahim	
	, , , , ,	
	(2020), Joseph (2018), Kaste (2011), Park (2017),	
	Melanoma Focus (2023), Lewin (2018), Lim (2018),	
	Turner (2021), Nice Guidelines (updated), NCCN	
	(updated to 2023)	
Clinical Guideline 6.4:	Terminology of 'fields' changed to 'basins'	
Ultrasound imaging of		
draining node basins		
Clinical Guideline 7.1:	Additional references: Cancer Society (2018)	
Supportive care		
Clinical Guideline 8.1:	Example of how care could be coordinated provided	
Care coordination	(GPP 8.1.1)	
Appendices	Link to RCPA reporting form updated (Appendix 3)	
	Appendix 3 (RCPA Structured Reporting Protocol)	
	updated to 3 rd edition	

Appendix 9: Background to the New Zealand Melanoma Clinical Guidelines

A range of tumour standards were developed by health sector working groups and patient representatives led by the four regional cancer networks that were set up to facilitate the implementation of the New Zealand Cancer Control Action Plan 2005–2010.¹ The first were the 2011 service provision standards for lung cancer patients.² These were followed in 2013 by provisional tumour standards for breast, bowel, head and neck, lymphoma, melanoma, myeloma, gynaecological, sarcoma, thyroid and upper gastrointestinal cancers.

In early 2019, the National Melanoma Working Group (NMWG) was convened to update the *Standards of Service Provision for Melanoma Patients in New Zealand – Provisional.* The NMWG reviewed the melanoma-specific sections of the provisional melanoma standards and updated these based on current evidence and best practice or, where evidence has not been available, through expert opinion, which was arrived at by consensus. The final document was released on the MelNet website in November 2021 and formally launched at the New Zealand Melanoma Summit in February 2022.

The NMWG reconvened in July 2022 and July 2023 with the purpose of reviewing the document to ensure the clinical guidelines continued to reflect latest research and best practice. This resulted in the publication of the second edition in September 2022 and third edition in September 2023. Feedback received during the review processes was considered by the NMWG, of which most has been incorporated. Significant changes to clinical material are included as **Appendix 8**.

This body of work wouldn't have been possible without the hard work and robust discussion of the working group members. Thanks must also go to Professor John Thompson, Emeritus Professor of Melanoma and Surgical Oncology, The University of Sydney, for his invaluable peer review of the initial document and XXX for his review of the most recent update in 2025, along with the numerous individuals and groups whose positive feedback has helped shape this document.

Cancer Control Taskforce. 2005. The New Zealand Cancer Control Strategy: Action Plan 2005–2010. Wellington: Ministry of Health.

National Lung Cancer Working Group. 2011. Standards of Service Provision for Lung Cancer Patients in New Zealand. Wellington: Ministry of Health.